
UNDERSTANDING HOW REVERSE ENGINEERS MAKE SENSE OF

PROGRAMS FROM ASSEMBLY LANGUAGE REPRESENTATIONS

DISSERTATION

Adam R. Bryant, Civilian, USAF

AFIT/DCS/ENG/12-01

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright Patterson Air Force Base, Ohio

DISTRIBUTION A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION
UNLIMITED

The views expressed in this dissertation are those of the author and do not reflect the

official policy or position of the United States Air Force, Department of Defense, or

the United States Government.

This material is declared a work of the U.S. Government and is not subject to copy-

right protection in the United States.

AFIT/DCS/ENG/12-01

UNDERSTANDING HOW REVERSE ENGINEERS MAKE SENSE

OF PROGRAMS FROM ASSEMBLY LANGUAGE

REPRESENTATIONS

DISSERTATION

Presented to the Faculty of the

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

Adam R. Bryant, B.S., M.S., M.S.

Civilian, USAF

March, 2012

DISTRIBUTION A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION
UNLIMITED

AFIT/DCS/ENG/12-01

UNDERSTANDING HOW REVERSE ENGINEERS MAKE SENSE

OF PROGRAMS FROM ASSEMBLY LANGUAGE

REPRESENTATIONS

Adam R. Bryant, B.S., M.S., M.S.

Civilian, USAF

Approved:

//SIGNED//______________________________ _17 Feb 2012__
Dr. Robert F. Mills Date
Committee Chairman

//SIGNED//______________________________ _17 Feb 2012__
Dr. Gilbert L. Peterson Date
Committee Member

//SIGNED//______________________________ _17 Feb 2012__
Dr. Michael R. Grimaila Date
Committee Member

 Accepted:

 //SIGNED//_______________________________________
 Dr. Marlin U. Thomas
 Dean, Graduate School of Engineering and Management

Acknowledgements

Thank you to the subject matter experts and participants who were involved with

the studies described in this dissertation. Thank you to my research committee for

guidance as I went through the process of learning research, and my supervisors,

which have provided me the opportunity to earn a PhD.

Finally, I would like to thank my wife and each of my children, who have all

been incredibly patient as I have tried to balance family time, work, and my studies

for well over a decade now. My wife, particularly, has provided immeasurable support

as I have been immersed in this problem for several years. I could never thank you

enough.

Adam R. Bryant

iii

Table of Contents

Page

Acknowledgements . iii

List of Figures . xii

List of Tables . xiii

Abstract . xiv

1. Introduction . 1

1.1 Overview . 1

1.2 Motivation . 2

1.3 Research Problem . 4

1.4 Approach to Solving the Problem 5

1.5 Research Contributions 7

1.6 Definitions and Conventions Used in This Dissertation . 10

1.7 Outline of the Dissertation 11

2. Literature Review . 13

2.1 Overview . 13

2.2 Situation Awareness . 13

2.2.1 Perception of Relevant Elements 14

2.2.2 Comprehension of the Current Situation 15

2.2.3 Projection of Future States 16

2.2.4 Observations From the Literature on Situation

Awareness . 17

2.3 Sensemaking . 18

2.3.1 Integrating Knowledge, Conjecture, and Inferences 19

iv

Page

2.3.2 Restricting Inferences 20

2.3.3 Connecting Inferences and Observations 21

2.3.4 Diagnosing from Ambiguous Observations . . . 22

2.3.5 Explaining Ambiguous Data 22

2.3.6 Sensemaking as Structure and Data Loops . . . 23

2.3.7 Summary . 24

2.4 Mental Models . 26

2.4.1 Knowledge of Memorized Patterns 27

2.4.2 Procedural Knowledge 28

2.4.3 Declarative Knowledge 28

2.4.4 Representations of Mental Models 28

2.4.5 Overview of the Literature on Mental Models . 30

2.5 Cognitive Processes in Understanding Programs 30

2.5.1 Mental Representations of Programs 31

2.5.2 Processes in Understanding Programs 33

2.5.3 Creating a Goal Representation 34

2.5.4 Planning . 35

2.5.5 Carrying Out the Plan 35

2.5.6 Sensing Information from the Environment . . . 35

2.5.7 Interpreting Information 36

2.5.8 Updating the Mental Model 36

2.5.9 Generating Hypotheses 37

2.6 Reverse Engineering Executable Programs 37

2.6.1 Information in Reverse Engineering Tasks . . . 40

2.6.2 Types of Reverse Engineering Information . . . 40

2.6.3 Assembly Instructions 41

2.6.4 Program Data 42

2.6.5 Observable Features 43

v

Page

2.6.6 Control Flow Information 44

2.6.7 Functional Information 44

2.7 Summary . 46

3. Methodology . 48

3.1 Introduction . 48

3.2 Design of the Overall Methodology 48

3.3 Study 1: Case Study . 51

3.3.1 Motivation for Using a Case Study Method . . . 52

3.3.2 Relation to the Research Questions 52

3.3.3 Unit of Analysis 53

3.3.4 Analysis . 55

3.4 Study 2: Semi-Structured Interview Study 55

3.4.1 Purpose of the Study 56

3.4.2 Design of the Study 57

3.4.3 Selection of Subject Matter Experts 61

3.4.4 Administration of Interviews 62

3.4.5 Controlling Threats to Validity 63

3.5 Study 3: Observational Study 63

3.5.1 Relevance to the Research Problem 64

3.5.2 Design of the Observational Study 65

3.5.3 Selection of the Task 65

3.5.4 The Angler Task 66

3.5.5 Selection of Participants 67

3.5.6 Data Collection 69

3.6 Related Research . 71

3.7 Validity . 74

3.8 Conclusion . 75

vi

Page

4. Case Study of a Reverse Engineering Task 76

4.1 Introduction . 76

4.1.1 Reverse Engineering a “Crackme” Program . . . 77

4.1.2 The “Splish” Task 78

4.2 Information and Affordances in the Task Environment . 78

4.2.1 Information in the Splish Task 79

4.2.2 Disassembly Pane 80

4.2.3 Register Pane 82

4.2.4 Program Stack 82

4.2.5 Memory Dump 83

4.2.6 Primary Affordances 84

4.2.7 Task Environment Summary 84

4.3 Walk-Through of Performance in the Splish Task 85

4.3.1 Exploring the Program 86

4.3.2 Determining the Goal 86

4.3.3 Determining an Approach 88

4.3.4 Localizing the Splash Screen Behavior 89

4.3.5 Inferring the Cause of the Splash Screen Behavior 90

4.3.6 Patching a Jump 90

4.3.7 Saving the Changes to Disk 91

4.3.8 Handling an Error 92

4.3.9 Testing the Changes 94

4.3.10 Summary of the Task Walk-Through 94

4.4 Think-Aloud Protocol 95

4.4.1 Categorization 95

4.4.2 Goals and Plans 97

4.4.3 Hypotheses . 98

4.4.4 Information Seeking 99

vii

Page

4.4.5 Attentional Focus 100

4.4.6 Concepts and Emergent Conceptual Themes . . 101

4.4.7 Concept Summary 105

4.5 Discussion . 105

4.5.1 Finding the ShowWindow Call 106

4.6 Conclusions . 109

5. Semi-Structured Interviews with Subject Matter Experts 110

5.1 Introduction . 110

5.2 Segmentation and Coding of Interview Data 110

5.2.1 Sentence-Level Concept Analysis 111

5.2.2 Idea-Level Concept Analysis 112

5.3 Recommendations for Observational Study 113

5.4 Results and Discussion 113

5.5 Reverse Engineering Domains 114

5.6 Procedural Aspects of Understanding Programs 115

5.6.1 Understand the Purpose of Analysis 116

5.6.2 Finish the Analysis Quickly 117

5.6.3 Discover General Properties of the Program . . 118

5.6.4 Understand How the Program Uses the System

Interface . 118

5.6.5 Understand, Abstract, and Label Instruction-Level

Information . 119

5.6.6 Understand, Abstract, and Label the Program’s

Functions . 120

5.6.7 Understand How the Program Uses Data 121

5.6.8 Construct a Complete “Picture” of the Program 123

5.7 Conceptual Aspects of Reverse Engineering 124

5.7.1 Information Cues 124

viii

Page

5.7.2 Specialized Knowledge 129

5.7.3 Automaticity and Tacit Knowledge 136

5.8 Conclusions . 138

6. Observational Study . 141

6.1 Introduction . 141

6.2 Overview of the “Angler” Task 141

6.3 Observations of Task Performance 143

6.3.1 Participant A 143

6.3.2 Participant B 144

6.3.3 Participant C 145

6.3.4 Participant D 148

6.4 Verbal Protocol Analysis 150

6.4.1 Computing State Transitions 152

6.5 Sensemaking in Reverse Engineering 156

6.5.1 Create Goal Representation 158

6.5.2 Plan an Approach and Carrying out the Plan . 158

6.5.3 Sensing Information 160

6.5.4 Interpreting Information 161

6.5.5 Updating Knowledge 161

6.5.6 Generating Hypotheses from Compiled Knowledge 162

6.6 Conclusions . 163

7. Conclusions . 164

7.1 Overview of the Research 164

7.1.1 The Case Study 164

7.1.2 The Semi-Structured Interview Study 164

7.1.3 The Observational Study 166

7.2 Summary of Research Contributions 167

ix

Page

7.2.1 Conceptualization of Software Reverse Engineer-

ing as a Sensemaking Task 167

7.2.2 Situational Aspects of Reverse Engineering Exe-

cutable Software 167

7.2.3 Structure and Content of Concepts and Proce-

dures in Reverse Engineering 167

7.2.4 Theory of Sensemaking in Reverse Engineering . 168

7.3 Implications of the Research 171

7.4 Areas for Future Research 172

7.4.1 Improving Capability of Reverse Engineering Tools 172

7.4.2 Further the Theory and Application of Sensemak-

ing . 173

7.4.3 Improving Methodologies in Knowledge Engineer-

ing . 174

Appendix A. Request for Exemption from Human Experimentation Re-

quirements . 176

Appendix B. Structured Interview . 179

Appendix C. Task Analysis Instructions 181

Appendix D. Research Description . 182

Appendix E. Analysis Scripts . 186

Appendix F. Coded Verbal Data from Case Study 189

Appendix G. SME Responses . 207

Appendix H. Goal-Directed Task Analysis of Reverse Engineering an

Executable Program . 216

Appendix I. Observational Study Coded Data (Participant C) 220

x

Page

Appendix J. Observational Study Coded Data (Participant D) 227

Bibliography . 236

xi

List of Figures
Figure Page

1. Endsley’s Model of Situation Awareness [68] 14

2. Various Functions Involved in sensemaking 19

3. Sensemaking as Reconfiguring Frames (from [115]) 20

4. Sensemaking as Mental Model Manipulation From [215]. 24

5. Sensemaking as Foraging and Data Loops [150]. 25

6. Rajlich’s Concept Triangle Model of Program Comprehension

[157] . 32

7. Graph-Based Debugging in IDA [88]. 45

8. Main Window of the Angler Crackme Program. 68

9. Information Presented by OllyDbg. 80

10. The Splish Crackme Program. 86

11. Splish’s Embedded Instructions. 87

12. Disabling the Splash Screen. 89

13. Finding the Bytes to Modify. 93

14. Basic Blocks in IDA Pro. 121

15. Sensemaking Processes from the Angler Task. 157

16. Sensemaking in Reverse Engineering. 169

xii

List of Tables
Table Page

1. Coding Rules. 96

2. Verbal Segment Properties. 98

3. Goal- and Plan-Related Segments. 99

4. Hypothesis-Related Segments. 100

5. Segments Expressing Information Seeking 100

6. Types of Information Capturing Attentional Focus. 101

7. System Concept Types. 103

8. Task Environment Concept Types. 103

9. Situational Concept Types. 104

10. Cognitive Concept Types. 104

11. Background Knowledge Concept Types. 105

12. Goals in Making Sense of Programs. 116

13. General Knowledge Areas in Reverse Engineering. 129

14. Specialized Knowledge Areas. 130

15. Participant Years of Experience (n = 4). 143

16. Rules Used to Code Segments. 151

17. Interrater Reliability of Coding Scheme (173 segments). 153

18. Number of Transitions (Participant C). 154

19. Transition Probability Matrix (Participant C). 154

20. Number of Transitions (Participant D). 154

21. Transition Probability Matrix (Participant D). 155

22. Prominent Transitions (P (Tr) ≥ µ+ σ). 156

23. Deliberation on a Plan. 159

xiii

AFIT/DCS/ENG/12-01

Abstract

This dissertation presents a theory of how reverse engineers make sense of exe-

cutable programs. The theory describes the process of sensemaking in reverse engi-

neering as a goal-directed planning-based search activity, in which the reverse engineer

interacts with an executable program using reverse engineering tools in order to con-

struct a mental model and working understanding of the functionality of the program.

This theory is developed through a case study, semi-structured interviews with expert

reverse engineers, and observations of reverse engineers performing a reverse engineer-

ing task. The theory of sensemaking in reverse engineering is a step toward building

autonomy into analysis tools so they will be able to discover vulnerabilities in complex

software-based systems and analyze executable programs to determine whether those

programs contain undocumented malicious functionality and should not be trusted.

xiv

UNDERSTANDING HOW REVERSE ENGINEERS MAKE SENSE

OF PROGRAMS FROM ASSEMBLY LANGUAGE

REPRESENTATIONS

1. Introduction

1.1 Overview

This dissertation develops a theory of the conceptual and procedural aspects

involved with how reverse engineers make sense of executable programs. Software

reverse engineering is a complex set of tasks which require a person to understand the

structure and functionality of a program from its assembly language representation,

typically without having access to the program’s source code. This dissertation de-

scribes the reverse engineering process as a type of “sensemaking,” in which a person

combines reasoning and information foraging behaviors to develop a mental model of

the program.

The structure of knowledge elements used in making sense of executable pro-

grams are elicited from a case study, interviews with subject matter experts, and

observational studies with software reverse engineers. The dissertation describes the

goals and procedures used in making sense of programs as well as the families of con-

cept knowledge which make up reverse engineers’ mental models of the programs they

investigate. The results from this research can be used to improve reverse engineering

tools, to develop training requirements for reverse engineers, and to develop robust

computational models of human comprehension in complex tasks where sensemaking

is required.

This dissertation’s novel research contributions are: a conceptualization of the

reverse engineering processes as an example of sensemaking, organization of procedu-

ral and conceptual knowledge aspects involved with performing reverse engineering

1

tasks, and a theory of sensemaking in reverse engineering that draws upon a sense-

making process elicited from observations of people reverse engineering executable

programs.

1.2 Motivation

Cyberspace has been described as the “control system . . . of hundreds of thou-

sands of interconnected computers, servers, routers, switches, and fiber optic cables

that make the nation’s critical infrastructures work” [153]. Organizations put a great

deal of trust in cyberspace in order to carry out their missions, but they cannot cur-

rently assess the trustworthiness of the systems on which their missions rely [95]. In

order to manage their risks, organizations must be able to assess the vulnerability

of their systems to attacks and system failures [32]. The current lack of technical

capabilities to quickly assess these vulnerabilities makes it difficult for organizations

to effectively manage or address the risks that come with operating in cyberspace

[31].

The President of the United States published a National Cyberspace Strategy

[153], which describes the need to “continuously assess threats and vulnerabilities to

federal cyber systems” through the “development of tactical and strategic analysis

of cyber attacks and vulnerability assessments.” Automating “cyber vulnerability

assessments and reactions” is one of the United States Air Force’s key capability

thrusts in the next twenty years [188]. However, approaches to automate analysis

tasks have met with difficulty because of numerous unaddressed challenges in under-

standing the human comprehension processes involved in assessing complex systems

[30]. Automating cyber vulnerability assessments and reactions in the future requires

an understanding of how people currently perform these tasks [30].

Vulnerability assessments are activities that involve analyzing complex systems

to discover vulnerabilities. Vulnerabilities are system flaws that create the opportunity

for someone to gain unauthorized access and control of a system [71]. Vulnerability

assessment activities seek to give analysts an understanding of how attackers can

2

leverage system flaws to create the opportunity to do harm on a computer system or

network.

Attackers often gain access to systems through exploits, which are programs,

data, sequences of instructions, or sequences of commands that take advantage of

vulnerabilities to perform tasks desired by an attacker [71]. Attackers may use ma-

licious software to gain access to a vulnerable system, to deliver an exploit, or to

retain access of a compromised system [180]. Malicious software, also called malware,

refers to “instructions that run on a computer and make the system do something

than an attacker wants it to do” [180]. This includes any type of executable software

“designed to disrupt or deny operation, gather information that leads to loss of pri-

vacy or exploitation, gain unauthorized access to system resources, and other abusive

behavior” [133].

In many organizations, the assessment of vulnerabilities in software-based sys-

tems is performed by software reverse engineers [65]. A reverse engineer is someone

who investigates a complex system through analysis and observation, and reverse

engineering is the term used to describe the process by which they do this [65].

Software reverse engineers analyze and assess software, or computer programs, to

understand what the programs do and how they work [65, 42]. Many software reverse

engineers specialize in analyzing malicious software from assembly language repre-

sentations [186] and seek to discover exploitable vulnerabilities in software programs

[92]. In this dissertation, software reverse engineering describes tasks involved in the

comprehension of programs from assembly language representations1.

Researchers have begun work in automating some of the many challenging tasks

involved with discovering vulnerabilities and analyzing malicious software such as im-

proving dynamic analysis [16, 15], finding higher-level templates of malicious behavior

1This definition differs from the definition of “software reverse engineering” from the program
comprehension community, which views it as a set of activities to create mental models and design
documents from source code[192]. As of this writing, a search for “reverse engineer” on the employ-
ment website Monster.com produces 30 jobs on the front page, all 30 of which are for people with
skills in analyzing a program from binary (assembly language) representations.

3

[43, 44], correctly disassembling executable programs [108], and creating better ways

of crafting control flow for input to a program [183]. Recently, visualization tech-

niques have been developed to explore how different representations can enable more

effective and efficient reverse engineering [82, 156]. But these techniques have not ad-

dressed the cognitive aspects of reverse engineering executable programs, which will

be essential to advancing the autonomy of vulnerability assessment technologies [30].

The theory of sensemaking presented in this dissertation addresses these chal-

lenges. This theory was developed from an integrated series of studies that investigate

how reverse engineers make sense of executable programs. The studies described the

components of reverse engineering situations, how reverse engineers think about the

programs they analyze, and how they actually make sense of and use information from

reverse engineering tools. In the next section, the research problem of the dissertation

is described. After that, the contributions of the research are outlined, and an overall

outline of the dissertation is provided.

1.3 Research Problem

Some reverse engineers are able to quickly assess complex software-based sys-

tems for vulnerabilities and exploit them in ways that automated technologies cannot

[26]. However, very little is understood about the cognitive processes that enable these

reverse engineers to comprehend the essential elements of the program so quickly.

The Air Force’s 2010 - 2030 Technology Horizons report depicts future invest-

ments in key technology areas such as “human behavior modeling,” “human-machine

interfaces,” and “information fusion and understanding” as vital to achieving the

ability to automate vulnerability assessments and reactions [188].

To achieve part of that strategy, this dissertation describes an integrated se-

quence of studies conducted to understand the human comprehension processes in

understanding executable programs. The studies in this dissertation culminate in a

theory about how people make sense of programs to construct a mental model of

4

the parts and properties of a disassembled program. This mental model theory of

understanding executable programs produces a number of additional research ques-

tions and identifies ways in which human information processing can be automated

or augmented by future developments in software reverse engineering tools. This dis-

sertation describes the questions, rationale, and detail of the studies which went into

the development of the theory.

1.4 Approach to Solving the Problem

An assumption that guides the research is that a person can be said to have

comprehended a situation by “making sense” of the situation [114]. The person is

said to have made sense of the situation after successfully developing a “situation

model” [198] which leads the person to effective behavior in the task. In the cognitive

science literature, a situation model (alternately referred to as a “mental model” of a

situation) is composed of the objects, actors, events, causal relations, and temporal

relations that are involved in a situation [189]. A person’s situation model is also

informed by the concepts that are relevant to the aspects of the situation [161, 101,

197].

The research question addressed in this dissertation is: “How do reverse engi-

neers make sense of executable programs while reverse engineering?” Particularly:

Q1: What conceptual elements are involved with making sense of an executable

program during reverse engineering?

Q2: What procedural elements are involved?

Answers to these questions are found by studying the tasks involved [111],

the automation used [68, 170], and the knowledge required to perform the work

[90, 55, 93]. Data to answer the questions can be collected by studying the situa-

tional characteristics of a reverse engineering task [70, 111, 67], talking to experts

[209], and observing people while they perform the tasks [52, 72]. This dissertation

5

answers the research questions by collecting and analyzing data gathered through

three complementary methodologies:

1. A case study [211] to explore the situational aspects involved in performing a

software reverse engineering task,

2. Semi-structured interviews [209] with subject matter expert software reverse

engineers to elicit concepts and processes involved in reverse engineering, and

3. An observational study in which concurrent verbal data [72] was elicited from

participants as they performed software reverse engineering tasks.

The case study (Chapter 4) presents an analysis of how the task environment,

characteristics of the task, and cognitive activities interplay in a reverse engineering

task performed by the researcher. The task was to analyze the disassembled instruc-

tions of a program in a user-level debugger to discover how and where the program

generates a splash screen window and to modify the program so the window does not

appear. The case study was used to develop intuitions about how conceptual and pro-

cedural knowledge are used in software reverse engineering and to better understand

problem solving in a reverse engineering task.

The semi-structured interviews conducted with subject matter experts are de-

scribed in Chapter 5. The content of the semi-structured interview was developed

from the results of the case study and involved questions about the nature of software

reverse engineering work, the goals, activities, decisions, and information cues reverse

engineers use in reverse engineering software, and discussions of tacit knowledge used

in reverse engineering. The subject matter expert interviews were conducted and

analyzed to gain an understanding of the different types of tasks involved in reverse

engineering programs and to identify how these tasks relate to each other. The inter-

view data was also used to establish the appropriate terminology, determine the tools

used by reverse engineers, and to identify types of tasks that would be helpful to use

in a subsequent observational study.

6

The observational study is described in Chapter 6. The observational study

was designed based on aspects identified from the subject matter expert interviews as

being relevant to understanding how reverse engineers make sense of programs from

assembly language representations. The task, tools used, and types of data collected

in the observational study were determined from the results of the subject matter

expert interviews.

In the observational study, verbal protocols were collected as participants per-

formed software reverse engineering tasks. Participants used a debugger to understand

an algorithm that processes a user’s serial number in a program by reverse engineering

the program from disassembled instructions and data. During the task, the partic-

ipants were instructed to think aloud, and their verbalizations were collected and

analyzed. Video data of task performance was also collected from each participant’s

computer monitor and the researcher took notes about each participant’s task per-

formance. The data from the observational study was analyzed and interpreted to

develop a theory about how reverse engineers make sense of programs from assembly

language representations.

1.5 Research Contributions

There are four research contributions in this dissertation:

1. The description of the representational gap in software reverse engineering and

conceptualization of reverse engineering as a “sensemaking” task,

2. The decomposition of situational factors in the process of understanding exe-

cutable programs,

3. A systematic elicitation of the structure and content of concepts and procedures

in reverse engineering from subject matter experts, and

4. A theory that describes the process of sensemaking in reverse engineering.

All of these contributions to the body of knowledge provide elements of a foun-

dation which begins to bridge a representational gap that exists between low-level

7

executable representations of programs and high-level abstract representations that

reverse engineers use in practice [30, 33]. Higher-level reasoning in reverse engineer-

ing is essential in order to connect the low-level data representations of executable

programs to higher-level abstractions representing actions, events, and intent in pro-

grams in order to meet the Air Force’s goal of “automated vulnerability analysis” in

the next two decades [188].

The first contribution is the description of the representational gap in software

reverse engineering and conceptualization of reverse engineering as a “sensemaking”

task (Chapter 2). This contribution relates the fields of literature in situation aware-

ness, sensemaking, and mental models with other bodies of literature on program

comprehension and reverse engineering programs from assembly language to argue

why higher-abstraction approaches are necessary to solving problems in reverse engi-

neering. This contribution also captures and represents the problems of comprehend-

ing executable programs in a way in which they can be approached by qualitative and

knowledge elicitation techniques used in other problem domains. This description

of the problem and conceptualization of the cognitive aspects of reverse engineering

executable programs has not appeared before in the research literature.

The second contribution of this dissertation is the decomposition of situational

factors involved in the process of understanding executable programs (Chapter 4).

Reverse engineering executable programs involve extensive interaction between ac-

tions on a computer system and mental reasoning processes. As such, much of the

problem can be considered a human computer interaction problem which is situated

in an environment [206]. This contribution characterizes the different abstractions

that are used in reverse engineering to represent the elements of the environment,

knowledge, and the task itself, which are involved in a reverse engineering situation.

This contribution was necessary in order to determine and organize the higher-level

concepts, procedures, and interactions that are required to computationally realize

the “situation” that intelligent reverse engineering tools will reason over in the de-

8

velopment of more autonomous reverse engineering capabilities in the future. This

decomposition is not found elsewhere in the research literature.

A third contribution of the dissertation is a systematic elicitation of the structure

and content of concepts and procedures involved in reverse engineering executable

programs (Chapter 5). This provides the framework for developing the “higher-level”

goals that automated analysis tools would pursue, and for establishing the knowledge

domains which these tools would need to have access to in order to perform effective

reasoning and problem-solving tasks in the reverse engineering domain. This type of

task decomposition for reverse engineering executable programs is not found in the

research literature.

The fourth contribution of the dissertation is a theory about the process people

use to make sense of executable programs. The theory of how people make sense of

executable programs and the analysis of the verbal protocol data that provides sup-

port for the theory is presented in Chapter 6. The theory involves a cycle consisting

of seven sub-processes: 1) goal representation, 2) planning, 3) carrying out a plan,

4) sensing information, 5) interpreting information, 6) updating the mental model,

and 7) generating a hypothesis. This contribution to the body of knowledge provides

the conceptual foundation necessary to develop algorithms to mimic the sensemaking

loop that humans use to interact with the environment and reason in higher-level ways

when analyzing executable programs. It is also proposed as a theory of sensemaking

which, in future research, can be applied to other problem domains in order to es-

tablish the generality, boundaries, and other implications of the theory. This process

of sensemaking is unique in that it describes sensemaking at a level of abstraction

and interaction with the environment which, unlike the other theoretical models of

sensemaking discussed in Chapter 2, produces claims which can be empirically tested

and provides clues to how this process could be computationally realized.

9

In addition to these research contributions, the research efforts described in the

dissertation produced a number of new questions which are relevant to future research.

These questions are discussed in Chapter 7.

1.6 Definitions and Conventions Used in This Dissertation

A working assumption of this research effort (and a fundamental premise of

human-computer interaction) is that people are information processors that solve

problems in interactive environments by processing information, applying stored knowl-

edge, and performing actions [38]. Following the convention used throughout the

artificial intelligence and cognitive science literature, knowledge is used to describe

a person’s beliefs or the structure, contents, and representations of a person’s mem-

ories and thoughts rather than statements that have been proven factual [130, 6].

Knowledge is referred to in terms of concepts (declarative knowledge) and procedures

(procedural knowledge) stored in a person’s memories [6].

A task environment refers to the interface provided to the problem solver,

whether the problem solver is a person or a computational agent [23]. In this dis-

sertation, the term task environment and environment are both used to describe the

presentation of information and affordances to a person performing a task and the

underlying structure of the system being interacted with, whether it is in a controlled

experimental task or a naturalistic, or real-world, setting [113]. The term affordance is

used to describe any object, item, display, or control in a task environment that a per-

son can manipulate [139]. The task environments involved in this dissertation consist

of computer graphical user interfaces providing the information and affordances that

are presented to a person to allow the person control over the state of a disassembled

program.

A background assumption of this dissertation is that when people perform tasks

like reverse engineering programs, the processes can be represented as a number of

activities in pursuit of goals and sub-goals [135]. Another assumption is that software

reverse engineering is a complex problem-solving domain, which indicates that among

10

other things, background knowledge is required to perform tasks in the problem do-

main [154].

1.7 Outline of the Dissertation

This chapter introduced the motivation for studying how people understand

programs from executable or assembly language representations. It described the

problem in terms of specific research questions and briefly enumerated the contribu-

tions of this dissertation in providing answers to these research questions.

Chapter 2 provides a literature review which details how the concepts of situa-

tion awareness and sensemaking apply to the problem of software reverse engineering

and highlights knowledge gaps that exist in the literature. Chapter 3 provides an

overview of the design of the data collection and analysis methodologies that were

used to answer the research questions presented in this chapter. It discusses and

justifies the decisions used in selecting, designing, and carrying out all three methods

and describes how each of the methods provides an integral piece in answering the

research questions.

Chapter 4 presents a case study of the situational aspects of reverse engineering

an executable program including the task environment, the goal structure of the

task, and the knowledge needed to perform effectively in the reverse engineering task.

Additionally, Chapter 4 discusses how the results from the case study were used to

inform the development of the subject matter expert interviews.

Chapter 5 describes processes, approaches, knowledge, tools, and techniques

elicited from interviews with subject matter expert reverse engineers. The chapter also

describes how the knowledge elicited from the subject matter expert interviews was

analyzed, represented, and verified, and how it was used to inform the development

of the observational study.

Chapter 6 describes the observational study and describes how the data was

segmented, coded, transformed, and interpreted to answer the research questions.

11

Finally, Chapter 7 summarizes the overall findings of the dissertation into a theory of

sensemaking in reverse engineering. It also discusses the implications of this theory

and indicates areas for future research.

12

2. Literature Review

2.1 Overview

Chapter 1 introduced the problem of understanding how people make sense of

executable programs and presented the research questions:

Q1: What conceptual elements are involved with making sense of an executable

program during reverse engineering?

Q2: What procedural elements are involved?

This chapter reviews the literature applicable to eliciting how software reverse

engineers make sense of programs from executable representations. In particular, this

chapter describes the current state of knowledge about situation awareness (Section

2.2), the human processes of sensemaking which enable people to develop situation

awareness (Section 2.3), and the concepts of mental models and situation models

(Section 2.4) which are central to understanding sensemaking in reverse engineering.

After the discussion of mental and situation models, Section 2.5 describes what

is known about a related problem: how programmers think about and mentally rep-

resent knowledge about programs when reading source code. Section 2.6 reviews the

differences between programmers comprehending programs from source code and re-

verse engineers making sense of executable programs. Finally, this chapter describes

the gaps in the literature which motivate the necessity for researching how people

understand programs from executable representations.

2.2 Situation Awareness

Situation awareness is a term used in the human factors literature to describe a

person’s perception of the relevant elements in a task environment, the integration of

perceptual information with the goals of the task, and the ability to project the state

of these elements into the future [68]. The term situation awareness is often used more

casually to refer to a person’s understanding, comprehension, and interpretation of

a situation [169, 170]. Situation awareness has also been construed as an awareness

13

Task/System Factors

Feedback

Individual Factors

Goals & Objectives

Preconceptions

(Expectations)

Information Processing

Mechanisms

Long Term

Memory Stores
Automaticity

Abilities

Experience

Training

Decision
Performance

of

Actions

Perception

of Elements

in Current

Situation

Comprehension

of Current

Situation

Projection

of Future

Status

Level 1 Level 2 Level 3

System Capability

Interface Design

Stress & Workload

Complexity

Automation

State of the

Environment

Figure 1 Endsley’s Model of Situation Awareness [68].

of information that is directly available from a person’s working memory or which is

activated and retrievable from a person’s long-term memory [169].

The most prominent model of situation awareness in the literature comes from

Endsley [68]. Endsley’s conceptual model of situation awareness ranks a person’s

awareness of a situation by three loosely-defined levels:

• Level 1: Perception of elements in the environment,

• Level 2: Comprehension of the current situation, and

• Level 3: Projection of future states.

2.2.1 Perception of Relevant Elements. Endsley’s model defines Level 1

Situation Awareness (SA) as the perception of relevant elements in the environment.

Elements refer to all of the “things an operator needs to perceive and understand” that

14

might be involved in a situation [68]. In this dissertation, elements are taken to mean

objects, information items, and affordances (or controls that people can manipulate

in the environment) along with their relevant attributes.

Level 1 elements correspond to elements in the task environment and their

properties which are perceptually available to the person performing the task [68].

Some notional examples of Level 1 elements in a reverse engineering task environment

include:

• An indicator that shows whether a program is stopped or running,

• A display of disassembled assembly instructions,

• The presence of a dialog box,

• The appearance of a window or text strings, and

• The presence of breakpoint indicators on instruction rows.

These elements are perceptual in nature and do not require significant mental

processing for a person to determine their presence [68]. Within a single task envi-

ronment, the elements that are relevant to a person’s mission and goals can change

depending on the specific situational context, and the goals, plans, and knowledge of

the person solving the task [68].

2.2.2 Comprehension of the Current Situation. Level 2 SA describes a

person’s ability to integrate the goals of a task or mission with perceptual elements

from the environment [68]. This ability to comprehend a situation provides a person

the ability to interpret elements in the environment in the context of a broader picture

of why they are important. The broader contextual picture includes concepts relating

to a person’s goals, the overall mission of a person’s organization, likely signs of

trouble in a task, and so on [68, 169, 25].

Where Level 1 elements involve perceptually available pieces of the task envi-

ronment, Level 2 elements require a person to perform mental processing for them

15

to be meaningful [69]. These elements may require a person to recognize something

from the task environment as an instance of a mentally stored concept [69]. They can

also be mental transformations of one or more Level 1 elements into a new mental

concept [68]. Level 2 elements involve components of the task situation, the goals of

the person performing the task, and person’s knowledge [67].

A notional example of a Level 2 element in a reverse engineering task envi-

ronment is a contiguous block of hexadecimal data which represents an array in a

higher-level programming language. Since they require interpretation, Level 2 ele-

ments can be thought of as items that someone without prior knowledge in the task

domain would not be able to interpret. Someone with experience working with ar-

rays and seeing them in a stack or in a memory dump can interpret the presented

perceptual information (a collection of hexadecimal values) as an instantiation of a

higher-level concept (an array), but by definition, someone without the knowledge to

interpret the presence of the contiguous hexadecimal values would not.

2.2.3 Projection of Future States. The third and highest level of Endsley’s

situation awareness model is Level 3: the ability to project the state of elements in

the environment into the future [68]. The projection of future states enables a person

to detect when problems are about to occur in the task or to determine whether or

not a plan will succeed [68].

Level 3 elements represent possible future states of Level 1 and Level 2 elements

[68]. A simple example of a Level 3 element in a reverse engineering task is a person’s

prediction about whether or not a conditional jump instruction (jnz, jz, etc.) will

be taken when the instruction pointer advances to the next instruction. To predict

whether a program will change control flow at a conditional jump instruction, a person

has to synthesize information about the current instruction, the state of the program’s

register values, and the effects of the state on future instructions in order to make an

inference about the relevant future state.

16

Level 3 activities involve prediction, interpretation, understanding, and making

sense of the underlying causal structure of the environment [68]. Performing these

mental activities requires attention, working memory, and the availability of necessary

information from the environment and background knowledge [68].

2.2.4 Observations From the Literature on Situation Awareness. There are

a number of concepts underlying the literature on situation awareness which should

be addressed in studying how people make sense of executable programs. These

concepts provide a foundation of working assumptions, used throughout the rest of

the dissertation.

First is the observation that a key frame of analysis in understanding situation

awareness is the situation. Implicit in the discussion above is the observation that the

situation involves:

• A person (or agent or team),

• An environment which has a number of states, or configurations,

• Goals the person seeks to achieve,

• Events that take place in the environment,

• Cause and effect relationships which make the person’s actions meaningful in

the environment, and

• A temporal context that orders actions and events in a linear sequence.

Second, the situation presented to a person in a human-computer interaction

task is presented primarily through information that the person can perceive and

comprehend and affordances which allow the person to manipulate parts of the sit-

uation [38, 69, 139]. This is similar to the sensor and effector framework used to

decompose and separate concerns in the design of agent-based artificial intelligence

systems [165]. Everything that the person in the situation does to understand or make

decisions is a property of the person, whereas everything the environment does, either

17

in response to or independent of the person’s actions, is a property of the environment

[213]. The information and affordances in the situation are what connect the person

and the environment [213].

Third, is that information and affordances can represent multiple levels of mean-

ing simultaneously [68]. Each of these levels of meaning can occupy a person’s atten-

tion, potentially at the expense of another level of meaning [68].

The next section discusses background literature on how a person in a task

environment comes to gain an understanding of the meanings involved in a situation.

2.3 Sensemaking

The process of coming to an understanding of a situation is referred to in the

literature as sensemaking1 [204]. Whereas situation awareness refers to the ability to

attend to Level 1, Level 2, and Level 3 elements as a situation unfolds [69], sensemak-

ing refers to the process that enables one to come to an understanding of the meaning

and relevance of the elements that make up the situation [114, 67]. The sensemaking

process is described as an ongoing integration of knowledge from a mental model of a

situation, available information about the context of a situation, and perceptual data

from the environment [164, 67]. Sensemaking has also been theorized as the process

that enables people to make intuitive decisions [112].

Sensemaking is described by Klein, et al. [115] as connecting inferences and

observations, integrating knowledge and conjecture, finding explanations for ambigu-

ous data, diagnosing ambiguous symptoms, and identifying problems. Sensemaking

also refers to comprehension of the significance of ambiguous events and data in the

environment [204]. All of these different functions of sensemaking describe a group

of separate but related cognitive processes (Figure 2). The collection of different

processes implies that sensemaking is in reality may refer to a class of reasoning pro-

1also “sense making” and “sense-making”

18

Knowledge

Conjecture

Inferences

Ambiguous data

Observations

Integrate

Connect

Explain

Diagnose

Mental model

Situation /

task environment

Restrict

Figure 2 Various Functions Involved in Sensemaking.

cesses, rather than one single process, which encompasses a number of different types

of inference and learning mechanisms [120, 103].

2.3.1 Integrating Knowledge, Conjecture, and Inferences. The first function

of sensemaking is involved in integrating knowledge, conjecture, and inference [112].

Knowledge is sometimes used to describe elements in the set of a person’s beliefs and in

the set of facts from objective reality [152]. In this dissertation, however, knowledge is

instead used to describe the contents involved in procedural and declarative memories.

This means that the term “knowledge” can be used to represent beliefs and memories

that are true as well as those that are not true [93, 131].

Conjecture describes propositions without factual base [152]. A conjecture is

similar to a hypothesis, in that it is a proposed theory about the relationship of real,

mental, or mathematical objects, but unlike a hypothesis, a conjecture has not been

proved mathematically or verified by a direct test in the environment [152]. People

develop conjectures and reason with them in the course of everyday life [104, 151].

Inference describes constructions of logical conclusions that are developed through

the process of reasoning over propositional statements [144]. Inferences are developed

from deductive, inductive, and abductive reasoning operations, but are not always

logically valid [144, 104]. Abductive inferences in particular are defined based on the

19

Elaborate a frame

Add and fill slots

Seek and infer data

Discover new data/

 new relationships

Discard data

Question a frame

Track anomalies

Detect inconsistencies

Judge plausibility

Guage data quality

Reframe

Compare

 frames

Seek a new

 frame

Reframing

 cycle

Frame
Manage attention

and define,

connect, and filter

the data

Data

Recognize/

 construct

 a frame

Elaboration

 cycle

Preserve

Figure 3 Sensemaking as Reconfiguring Frames (from [115]).

logical fallacy of “affirming the consequent” [104, 165]. When people integrate knowl-

edge, conjectures, and inferences, they are involved in sorting out what they believe

to be true, what they believe to be false, and what they do not know [144]. People’s

ability to integrate knowledge, conjecture, and inference allows them to accrue evi-

dence toward justifying a position on a given matter, or toward refuting a position on

the matter [104].

2.3.2 Restricting Inferences. In describing a conceptual model to explain

sensemaking, Klein, et al. [115] theorize that problem solvers simultaneously rec-

ognize and construct knowledge representations from available data while managing

currently existing knowledge representations called frames. In Klein’s model, the

two processes of creating frames and managing frames create constraints on inter-

nal reasoning processes that enable people to cope with decision making in complex

real-world environments [112].

20

Constraining inferences to those that are relevant and plausible makes it possible

for a person to adequately solve a problem without considering all available data or all

possible configurations of the problem’s variables [109, 124, 143]. This is important

because without the ability to limit possible explanations and possible hypotheses,

abductive inference has been shown to be computationally intractable in many cases

[34, 210].

When people solve complex problems that present many possibilities, they rely

on knowledge models to constrain their reasoning and planning processes [116]. Ef-

fective constraints on reasoning are essential to making complex problems tractable

[138, 102, 101]. This suggests that the sensemaking process involved in restricting

reasoning possibilities is aided by the existence of organized knowledge models that

make constraints available to reduce logical possibilities [102, 212].

2.3.3 Connecting Inferences and Observations. Another function of sense-

making is that of connecting observations in the environment with inferences [115].

When people solve problems, they make predictions about what they will perceive

[11]. When a person infers the future state of elements in the current situation and

that inference turns out to be correct, the person’s reasoning can be described as

“business as usual,” because there is no reasoning required to interpret the elements

in the environment and no sensemaking process is necessary [112]. However, when

the state of the elements in the environment do not match the state that was inferred,

the person has to expend mental effort to integrate the unexpected results, which is

where a sensemaking process is required [204].

When a person is presented with information from the task environment that

does not match the state they inferred, it forces the person to decide between keeping

the new information, keeping the inference, or maintaining the inconsistent beliefs [3].

The problem of reconciling and integrating sources of information from the environ-

ment with knowledge appears in many applications of intelligent behavior, but the

atomic processes by which humans do this is not yet well understood [21, 29, 10].

21

When people have difficulty integrating information with their mental models,

it can lead to poor decisions and reasoning errors [107]. One cause of this is that

people are not always able or willing to identify gaps in their knowledge [3]. For

instance, a person may have difficulty attending to information from the environment

which contradicts a previously held mental model of the situation [105]. Previously-

held beliefs can also prevent a person from integrating new knowledge, leading to

many types of decision biases and experimentally predictable decision-making errors

[175, 101, 102, 116].

2.3.4 Diagnosing from Ambiguous Observations. A fourth function of sense-

making is to diagnose problems from observations and ambiguous data in a situation

[115]. This function can involve spotting problems in a plan of action or diagnosing

problems that have already come into play in the situation [132]. In tasks involv-

ing troubleshooting, people attempt to build explanations for events based on infer-

ences from information about previous events [132, 39]. Their inferences allow them

to match their situation to features of general or past situations and to use causal

knowledge from those situations to make predictions about likely future states in their

current situation [106]. A person’s inferences allow simulating the future state of the

environment to determine if the transitions in states of the involved elements in the

task environment will work to accomplish their plans, or if there were problems in how

actions taken changed the state of the environment in a plan was already conducted

[136, 106].

2.3.5 Explaining Ambiguous Data. A fifth function of sensemaking is to

explain data that does not fit in the context of the understood situation [115]. Ex-

planation involves the integration of information from the environment with a mental

model in a way that can best account for the information and inform reasoning pro-

cesses [147, 5, 99].

An example of sensemaking as presented by Klein, et al. [112] consists of am-

biguous data and neonatal intensive care nurses whose task was to interpret the symp-

22

toms of a baby with sepsis. In the vignette, a less experienced nurse saw symptoms

of sepsis in a baby but did not have the experience to connect those symptoms with

the diagnosis and resulting urgent treatment that was required. A more experienced

nurse saw the same symptoms but had the knowledge to connect the information from

the environment (the symptoms) with her own knowledge to form the diagnosis and

get the baby the needed treatment [112].

2.3.6 Sensemaking as Structure and Data Loops. Conceptual models of the

sensemaking process represent it as an iterative or loop-based process. Zhang, et

al. [215] present an integrated model of sensemaking as an iterative mental model

modification which is supported by observations of students making sense of stories in

news articles (Figure 4). Zhang’s model, like the Klein model, describes a high-level

process of integrating task and problem knowledge with existing knowledge structures.

It describes sensemaking as:

1. Identifying gaps in data and structure,

2. Actively seeking for information and structure, and

3. Accretion, tuning, and restructuring of mental models.

The activity of identifying gaps involves learning that there are inconsistencies

between knowledge and perceptual information [215]. Gaps between knowledge and

perceptual information indicate that there may be a problem with a person’s current

set of assumptions [112]. When people identify knowledge gaps, it leads them to

either modify their knowledge structures or to seek information that matches their

knowledge structures [115]. When making sense of a knowledge gap, people seek

information to build, support, or refute hypotheses [99].

Instead of seeking information, people can also seek structure to organize infor-

mation that has already been perceived or interpreted [150]. The activity of seeking

structure involves accretion, tuning, and restructuring of a mental model [162]. Ac-

cretion is the addition of new information to the set of a person’s prior knowledge.

23

Figure 4 Sensemaking as Mental Model Manipulation From [215].

Tuning is a process of adjusting a person’s background knowledge to match new

knowledge. Restructuring involves re-evaluating and re-forming an entire knowledge

schema to better accommodate the perceptual information [162, 215]. These activi-

ties take place until a reasonably explanatory mental model is completed or until the

decision task is complete [215].

Pirolli and Card [150] present a model that describes the sensemaking process

with a sensemaking loop and a foraging loop. The sensemaking loop (Figure 5)

involves the development of a mental schema, hypothesis, and representation, while

the foraging loop involves activities for searching for evidence from the environment

[150].

2.3.7 Summary. The literature on the sensemaking process presents a few

assumptions. First is that sensemaking can be a static or an interactive process. Static

sensemaking involves simply the interpretation of information into a mental model

representation. Interactive sensemaking however, involves providing inputs to the

task environment in a situation in order to make changes and gain more information,

a process which is often called information foraging [150].

24

1. External

Data

Sources

2

5

6 8

9

11

12

15

4. Shoebox

7. Evidence

File

10. Schema

13. Hypotheses

16. Presen-

tation

3. Search for

Information

6. Search for

Relations

9. Search for

Evidence

12. Search

for Support

15. Reevaluate

2. Search

& Filter
5. Read &

Extract

8. Schematize 11. Build

Case

14. Tell

Story

Sensemaking Loop

Reality/Policy Loop
(finding neg

evidence,

volume)

(skimming,

finding info,

volume)

(volume,

organization)

(holding large

structure,

overview)

(multiple

hypotheses,

hypothesis gen,

order bias,

source tracking)

Dual

search

Foraging Loop

Who & What How are they related? What does it have to do

with the problem at hand?

How do we know?

Are we sure?

S
T
R

U
C

T
U

R
E

EFFORT

14

3

Figure 5 Sensemaking as Foraging and Data Loops [150].

Second is that sensemaking is an iterative or cyclical process. This means that

outputs from one iteration through a sensemaking loop are inputs to a second iteration

in the loop. Since each iteration in a sensemaking loop provides a person information

about whether actions taken in the last iteration were productive or not, this means

that sensemaking must involve some type of learning from experience, as well as

learning from new information.

Third is that across all of the literature reviewed, sensemaking processes involve

the following activities:

• Generation of hypotheses,

• Reasoning about the consequences of a hypothesis,

• Seeking information to support or refute the hypothesis, and

• Integration of new information with previous information in a mental model.

25

The key product of the sensemaking process is a mental model. The mental

model is the theorized mental representation that is initially generated to mentally

store information about the situation. The mental model can be added to and sub-

tracted from (accretion), have values changed (tuning), and re-organized (restructur-

ing) [161]. The next section discusses the literature involving mental models.

2.4 Mental Models

A mental model is a hypothesized representation used to depict a person’s knowl-

edge structures relating to a particular environment, situation, object, or concept

[138, 80]. Results of empirical work suggest that during task performance, problem

solvers query and manipulate mental models to predict the future state of a problem

or situation [101]. In addition, mental models have been shown to guide participants’

search processes in problem-solving tasks [116]. The presence and use of mental mod-

els by problem solvers is supported by a number of experiments that have used the

theory of mental models to predict systematic errors in reasoning that are not easily

explainable without the mental model construct [102, 116].

Peoples’ awareness and understanding of situations are impacted by the quality

of their mental models [101]. High-quality mental models tend to be highly structured

and accurate. In general, experts perform better than novices because experts have

highly-structured stored memories of interaction that closely meet the needs of their

tasks [101, 60]. Organized knowledge allows experts to quickly assess the relevant

aspects of their situations, assess meaningful states in the task, and perform tasks

effectively [60]. However, people with little experience lack the stored patterns of con-

cepts that would help them determine which elements in their situations are relevant

[210, 214, 150].

Experts also tend to have more refined knowledge of how to perform tasks

than novices, including knowledge of the actions needed to accomplish their tasks

and representations of available states and actions [173]. These features of experts’

procedural knowledge enable them to perform faster, better monitor progress toward

26

problem goals, and estimate the difficulty of tasks more accurately than novices [60,

173].

2.4.1 Knowledge of Memorized Patterns. Both declarative and procedural

knowledge tend to be organized around memorized patterns [162, 195]. In a study of

memory, chess masters were able to reconstruct most or all of the positions on a chess

board after having seen the board for only five seconds but when novices were given

the same task, they could only recall two to three pieces [60]. However, if the pieces

on the chess board were arranged randomly instead of in a pattern that chess players

typically encounter, the expert lost the advantage in reconstructing the board [60].

These results indicate that the experts were not recalling individual pieces on the

board but rather stored patterns of pieces that they had experience with and could

easily reconstruct from memory [60]. People are able to use memorized patterns of

concepts and procedures to mentally represent entities, parts of entities, properties of

entities, actions, processes, and categories of entities [121].

One factor that makes studying mental models challenging is that mental models

are not directly observable [138]. In order to study peoples’ mental models, researchers

attempt to elicit problem-solving behavior in ways that allows them to infer properties

of internal mental model representations [102, 67]. By using knowledge elicitation

methods, researchers are able to construct situation model representations of the

mental models of participants in the task [67, 110]. Unfortunately, there is no single

best representation formalism for capturing and representing a situation mental model

[93, 110, 67], and particularly, a person’s situation model of the state of an executing

program.

Various computational representations exist to help researchers communicate

about mental models [171, 161, 93, 4]. These representations vary depending on the

type of knowledge they are intended to describe. Any model of a system loses fidelity

in the process of modeling and makes particular commitments to details about the

knowledge architecture [104]. Because of these commitments, each available formalism

27

has its own benefits and drawbacks, which can make it more or less appropriate

for representing certain types of knowledge or for solving certain types of problems

[131]. Knowledge types represented in computational models of human memory are

categorized according to the type of human memory theorized to store and retrieve

them, namely procedural and declarative knowledge [4, 195].

2.4.2 Procedural Knowledge. Procedural knowledge consists of how-to rules

that enable a person to perform tasks in a situation [4]. Representations of procedural

knowledge express task processes in terms of rules involving concepts and information

requirements [179, 4]. Problem solvers are able to select and apply specific sets of task

operations (or methods) in order to achieve higher-level goals and the sub-goals from

which they are structured [38]. Procedural patterns of knowledge can be thought of as

organizations of goals, operators, methods, and selection rules within a domain [38].

Procedural knowledge can also include heuristics and reasoning short-cuts which are

specific to a problem domain [143, 124, 148, 94].

2.4.3 Declarative Knowledge. Declarative knowledge includes episodic knowl-

edge, which consists of memories indexed by particular contexts or experiences [195]

and semantic knowledge (also called conceptual knowledge), which consists of facts,

objects, and relations between concepts [162]. Semantic knowledge consists of the

components of knowledge related to memory of facts, objects, and situations [4, 6].

Knowledge of situations seen previously is stored in episodic memory [195]. Episodic

knowledge involves the knowledge that allows people to reconstruct information from

their mental indexes into episodic memories of an environment [195].

2.4.4 Representations of Mental Models. A number of knowledge represen-

tations have been proposed to enable the development of computational models of

cognitive processes. These include theories that ascribe particular representational

views of cognition, such as a neurophysiological representations [141] and “symbol

28

system”-based cognitive architectures [6, 134]. Other knowledge representations exist

for specific scientific or engineering purposes [131, 93].

A schema is a representation that describes how a set of mentally stored con-

cepts is structured [162]. A schema contains features or attributes that describe and

categorize objects [162]. According to schema theory, people classify new entities into

categories based on how those entities relate to concepts they are aware of [162, 12].

The categories of a concept representation and its attributes compose a schema rep-

resentation of knowledge [162]. Conceptual schemas are representations that can

store information about elements and affordances that exist in the task environment

[162, 139]. Schema theory claims that schemas are manipulated during the process of

problem solving in order to change the content and structure of a mental model [138].

Another way to represent concept knowledge is through a frame-based concept

representation [130]. A frame is a data structure that is designed to store a “stereo-

typed situation” that represents knowledge people hold in their memories. A frame

contains one or more terminals, which are slots for data that may be filled with val-

ues representing the characteristics of a particular situation. Frames are organized

into frame systems that are “networks of nodes and relations” that represents a per-

son’s background knowledge with respect to a given problem domain [130]. Minsky

proposes that people have unique frame systems for objects that are important to

them, but that these frame systems are composed from a set of basic or generic frame

structure components [130].

In frame theory, terminals in a given frame have a default assignment that

change as the needs of a situation dictate. Frames can be modified in the course of

a task, and transformations between frames account for changes in the visual space,

actions in the environment, cause and effect relationships, and changes in the current

“conceptual viewpoint” [130]. In assessing a situation with a frame system, after a

person perceives a situation, they develop a frame to match the situation [130]. A

29

process of pattern matching then assigns values to the terminals of the frame so it

can be instantiated [130].

A script is a representation formalism used to communicate episodic knowledge

of a temporally-indexed sequence of concepts [171]. Mental models based on scripts

enable people to specify sequences of inputs or actions that are needed to accomplish

each function in their current task strategy [38].

2.4.5 Overview of the Literature on Mental Models. The discussion on

mental models in this section makes a few key points about mental models. First,

they are not directly observable, so methods at eliciting a person’s mental model can

only provide information about some of the properties of the mental model [138, 67].

Second, mental models represent both the primary output of the sensemaking process

as well as one of the primary inputs to the process [215]. This means that mental

models are constantly changing and being updated as a person interacts with the

environment [215, 115].

By analogy, these points indicate that when people try to make sense of exe-

cutable programs, they do so by forming, querying, and changing a mental model,

interacting with a task environment, and interpreting new information. The research

literature from the field of program comprehension also investigates how people make

sense of programs and develop and maintain mental models of the programs, but from

source code representations and with the intent to maintain the program, rather than

to find vulnerabilities in it. In the next section, the body of literature in program

comprehension is briefly described in order to better outline what is known and what

is not known in understanding how people make sense of executable programs.

2.5 Cognitive Processes in Understanding Programs

Throughout the literature, the terms “software reverse engineering” and “reverse

engineering” are used to refer to various activities involved in reconstructing a mental

model or other meaningful representation of a program, typically from the program’s

30

source code [185]. Tilley [192] describes the activities of reverse engineering as: sifting,

reading, processing, and mentally connecting relevant information and events from the

program’s source code and other artifacts through “mental pattern recognition” to

create “more abstract system representations” [192]. At the surface, this description

of reverse engineering is very similar to how Klein et al. [115] describe the process of

making sense of a situation.

One of the keys in how people comprehend programs involves the abstraction

of low-level data into high-level concepts [77]. Rather than taking an approach that

reverse engineering is purely a process of abstraction [35], reverse engineering can

better be understood as connecting information from the environment with mental

models of concepts [19], programming plans [181], and control flow representations

[178].

2.5.1 Mental Representations of Programs. In the reverse engineering liter-

ature, concepts are used to describe the knowledge structures that programmers or

reverse engineers have of how programs work [61]. Concepts are sometimes depicted as

mental constructs that are roughly equivalent to classes in an object-oriented frame-

work, and locations in source code files represent instantiated extensions of those

concepts [196, 157]. Rajlich [157] describes the importance of intensions, or meanings

to the process of program comprehension. For several years, researchers in program

comprehension have sought to assign concepts to areas of a program’s source code

[157]. In Rajlich’s model (Figure 6), a “concept triangle” represents the process of

program comprehension as a combination of:

• Naming,

• Annotation,

• Traceability,

• Recognition,

• Location of labels, and

31

Name

Intension Extension

Annotation

Naming

Definition

Recognition

Location

Traceability

Figure 6 Rajlich’s Concept Triangle Model of Program Comprehension [157].

• Extensions (plans in the program).

Although “automated concept assignment” is alluded to in [19], the literature

does not provide any indication that tractable concept assignment algorithms exist,

particularly for programs represented only in assembly language.

A broader view of the term “concept” in the literature uses the term to refer

to user- or programmer-defined “concerns” that provide a straightforward mapping

to something a person cares about in the development of a program [64]. In this

view, a concept such as “saving” can correspond to the programmer’s desire to have

functionality that allows a user to save a file [64].

Another approach to understanding peoples’ mental models of programs is to

map “plans,” or actions taken by the program’s designer toward some intended goal

or to locations in the program’s source code [100, 181]. The term “plan” was borrowed

from the field of artificial intelligence [155], in which a plan is a set of intended actions

an agent selects to transition between states of a problem space in order to reach a

goal [165]. Plan recognition is the process of inferring that a plan has been conducted

by mapping the actions observed from an agent’s behavior to a conceptualization of

the states of a more abstract plan in a knowledge base [79].

Plans represent “reusable patterns of data flow and control flow” [119]. Plans are

different from algorithms and procedures in that they are more abstract patterns that

32

can be “composed in complex ways,” and represent the ways that programmers think

about programs [119, 181]. In the program comprehension research field, there have

been attempts at assigning abstract mental plans to instantiated plans in program

source code [100, 119, 2]. There is a great deal of ambiguity between what constitutes a

plan to accomplish something in a program and the implementations of those actions

in source code [119]. Additionally, without the structure provided by higher-level

languages, there are an extremely large number of possible implementations for any

given plan, many of which are not located in a single location in source code [119].

There are also many given plans that could map to a given implementation in source

code [119]. Finally, constructs in programming languages such as the goto statement

make even complex approaches to plan recognition intractable [119].

The processes programmers use to integrate observations from source code and

background knowledge have been described in general as “top-down” or “bottom-

up” approaches [203, 202, 200]. Bottom-up information seeking processes involve

“exploration” activities in information foraging [150] and top-down processes involve

“directed search” [40] for information. Tilley [192] calls this process information

exploration and notes its primary importance in reverse engineering. Information

search involves focusing on a goal to retrieve the information, figuring out how to

retrieve the information, and following the plan of action to retrieve the information

[207].

2.5.2 Processes in Understanding Programs. Reverse engineering is a goal-

directed activity that takes place in a temporal context [193]. Because of this, elements

of complex problem solving, namely constructing a goal representation, forming a

plan, and carrying out a plan [135, 154] are needed to account for the goal-directed

nature of problem solving in the task environment. From the descriptions of reverse

engineering and the structure of knowledge presented above, the steps in the process

of understand a program can be described in the more general terminology of making

sense of a situation:

33

• Finding relevant information (goal-setting, planning, and acting to carry out

information foraging activities),

• Sensing information (such as reading source code),

• Interpreting information,

• Updating a mental model (connecting information with existing concepts), and

• Generating hypotheses and assumptions.

These aspects of program understanding are described throughout the remainder of

this section.

2.5.3 Creating a Goal Representation. In simple planning problems like the

blocks world domain, or Towers of Hanoi, it is taken for granted that a goal is present

and a goal representation is straightforward [73]. In small-scale tasks, goals can be

specified in terms of a fixed set of predicates [73, 165].

In so-called “large world” problem domains [20], determining the goal and a

suitable representation of the goal state is a challenging problem with aspects that

change during task performance [154]. In more complex problems, the goal may

not be known from the outset or may only known in a very vague way [154, 17].

Particularly in problems where information is to be retrieved from an information

processing system, people may not be able to adequately describe what information

they want, so the development of a representation is an essential part of the process

[17].

In real-world tasks, the goal evolves as more is learned about the problem

[40, 150]. Instead, as the person gains information about the goal, the person’s mental

representation of the goal is added to and taken away from until it is a close repre-

sentation of the desired final state [215]. Depending on the person’s mental model at

the beginning of the problem-solving process, the initial goal representation may look

very different from the goal representation at the end of the problem-solving process.

34

2.5.4 Planning. Once a person develops and understands the goal, a plan

connects the current state of the environment to the goal state through a sequence of

actions [165]. Constructing the plan involves generating a set of actions and inferring

resulting states to determine how well those actions might be able to achieve the goal

state [165].

In generating actions, people might consider how each action will change the

state, so that they can construct a mental path of state modifications that eventually

will end up at a state that meets the goal condition [199]. Understanding programs

involves mental reasoning processes as informed by seeking information in the reverse

engineering task environment, so plans should be able to refer to both types of action

sequences.

2.5.5 Carrying Out the Plan. Carrying out a plan is the process of following

the sequence of planned actions [199]. As the plan is carried out, a person may need

to construct sub-goals and sub-plans to proceed along a sequence of actions, or back

up in the problem-solving process, often called “pushing” or “popping” goals [199].

Whereas planning involves selecting or reviewing the actions to be taken, carrying

out a plan includes actually taking the actions themselves.

2.5.6 Sensing Information from the Environment. When people carry out

tasks, they are constantly perceiving and reacting to information from the environ-

ment, monitoring the state of the environment for relevant changes, and keeping

track of progress as the plan proceeds [75]. Sensing information is the act of perceiv-

ing information from the environment and involves perceptual activities like directing

intention toward an item on a display and encoding the perceptual information [69, 6].

In the ACT-R theory of cognition as information processing [4], the person perceiving

a task takes in information cues from the task environment through shifting attention

and encoding the item.

35

2.5.7 Interpreting Information. Interpreting information involves cognitive

processing taken after perceiving and encoding an item from the environment [6].

Interpreting information is different from sensing information because the process

involves recognizing the information by matching the features from the environment to

a chunk in declarative knowledge where sensing information only involves the encoding

of the features [6].

Interpreting information from a program can be thought of as connecting con-

ceptual meanings to locations in a program [157, 192]. Concepts in programs can refer

to plans [181], abstract classes of objects [196], or concepts from the situation model,

the program model, and the domain model of a program [200]. Plan recognition in

reverse engineering refers to matching items in a program’s code to abstract patterns

of intentions, or “plans,” that represent the functionality the program’s designer likely

intended [155].

While attempts have been made to assign abstract mental plans to instantiated

plans in program source code, these have only been applied in very small programs

with limited results [100, 119, 2]. These approaches have had difficulty gaining traction

because there is a great deal of ambiguity between what constitutes a plan to accom-

plish something in a program and the implementations of those actions in source code

[119]. Additionally, without the structure provided by higher-level languages, there

are a large number of possible implementations for any given plan, many of which are

“delocalized” throughout multiple locations in a program’s source code [119]. Many

given plans can also map to a single implementation in source code [119]. Finally,

constructs in programming languages such as the GOTO statement make standard

search and pattern-matching approaches to plan recognition completely intractable

[119, 155].

2.5.8 Updating the Mental Model. In the process of updating knowledge,

new knowledge is added, existing knowledge is modified, and relationships between

pieces of knowledge are changed [215]. Updating the mental model consists of the

36

processes of accretion, restructuring, and tuning knowledge in a mental model [161].

Through this process, new knowledge is added, existing knowledge is modified, and

relationships between pieces of knowledge are changed, depending on the type of

knowledge received previously. Updating the mental model involves an additional

level of processing beyond comprehension of information. Updating a mental model

involves integrating the person’s current mental model with a series of integrated

models that are formed when new information is processed to develop a complete

model [216]. The step of updating the mental model serves as a way to simplify all of

the information encountered up to that point so they can be retrieved and reasoned

with as the problem-solving task proceeds [216, 101].

2.5.9 Generating Hypotheses. Reverse engineers are known to develop ques-

tions and hypotheses about the program they are studying [28]. Tilley [192] describes

the “iterative refinement of hypotheses” as one of the most important areas of reverse

engineering. Hypotheses are testable propositions which can be verified through con-

firming or disconfirming evidence. Hypotheses that relate cause x and effect y are

referred to as causal hypotheses [24]. Testable hypotheses in reverse engineering en-

able a person to acquire new knowledge which can be systematically verified through

seeking out evidence from a task environment [152]. Hypotheses connect concepts

2.6 Reverse Engineering Executable Programs

Reverse engineering executable programs is cognitively challenging because it

requires understanding diassembled machine code, it requires the use of specialized

reverse engineering tools, and there is a great deal of knowledge to master in order to

be proficient.

First, reverse engineers primarily work with disassembled executable code in-

stead of source code [65, 92]. Disassembled executable programs can contain hundreds

to hundreds of thousands of assembly language instructions [63]. Assembly language

representations can faithfully model what programs do and how they execute on a

37

computer’s processor [9, 190]. However, assembly instructions provide very low-level

abstractions of the program’s functionality, which are at a different level of abstrac-

tion from the concepts many people use to describe how computer programs work

[86].

Second, software reverse engineering tasks require skill in using a number of

software reverse engineering tools [65]. Reverse engineering tools are programs reverse

engineers use that enable gathering data and controlling the execution of programs

[37]. These tools include program disassemblers, hexadecimal editors, decompilers,

deobfuscators, unpackers, and more [37]. Many software reverse engineering tools are

created by reverse engineers in an ad hoc manner, so they have come to be known for

being difficult to use and for not having human cognitive factors incorporated into

their designs [85].

Third, a great deal of knowledge is required to perform as a reverse engineer [92,

65]. Among many other areas, reverse engineers need to have knowledge of assembly

language [65], operating system calls and how they work [65, 92], memory and process

layout [22], and potentially attack and defense techniques [180, 186, 91, 92, 22].

Several aspects of reverse engineering executable programs are different than

reverse engineering programs from source code. Reverse engineers typically ana-

lyze programs written in higher-level programming languages and that have been

translated into machine code by a compiler and disassembled into assembly through

a separate disassembler. When a program is compiled, objects in the higher-level

programming language are translated into machine code and many of the traces of

semantic information in the source code are removed by the compiler [1]. In under-

standing a program from assembly language, concepts are not readily provided by an

object-oriented structure because assembly language does not have the same types of

programming abstractions [182].

Reading source code from higher-level programming languages provides a great

deal of semantic information, intentional information and structure to a programmer

38

[192]. On the other hand, analyzing programs from assembly language provides a

very low level of data abstraction that allows very few assumptions [174].

Assembly language representations lack indications of higher-level meanings

that are present in a source code representation of a program. When reading source

code, a programmer has access to comments that other programmers have written

about the behavior of functions or the purpose of variables. Additionally, source code

representations of programs involve variable, function, class and object names which

may preserve extensive information about the intended meaning of an item. These

items can serve as “hints” for someone reading source code. If knowledge of the mean-

ing of a function is desired, a reverse engineer must reconstruct that meaning from

observation and analysis of the program [65].

Some of the characteristics of executable code that make it challenging to read

are:

• Executable code is very complex,

• Even small programs have hundreds to hundreds of thousands of instructions,

and

• Behavior of a program depends not only on the sequences of the instructions,

but also input data provided from the outside world, such as files read in by the

program, current values in memory, or network data captured by the program

[182].

Executable programs also lack the higher-level semantics that source code con-

tains. Executable programs sometimes have functions, but when source code passes

through a compiler, functions can be in-lined into assembly language [76]. There

is also no concept of buffers, arrays, or types in assembly language representations

[182, 97]. All of these are essential abstractions that programmers use to think about

and understand programs [187].

Song, et al. [182] also describe that understanding executable programs requires

taking a whole system view. Analyzing a program’s executable code requires one

39

to consider not only the instructions and data, but also the operating system, the

processor architecture, and software.

In many security-relevant applications of analyzing executable programs, pro-

grams may intentionally make the instructions difficult to understand and analyze

through employing code obfuscations [50].

Program comprehension is qualitatively different in several aspects from the way

reverse engineers understand code in assembly language.

2.6.1 Information in Reverse Engineering Tasks. Information cues provide

a person status as to the current state of the system (the configuration of the task

environment) and the current state of the problem-solving process [69]. Information

cues can indicate that it is time for a problem-solving or task-environment decision

to be made or how a decision should be made to pursue a course of action [69].

Reverse engineering task environments like disassemblers and debuggers provide

the critical information that impacts how tasks must be accomplished [65]. Informa-

tion seeking in reverse engineering can be seen as browsing or foraging for information

based on the relevance of the information that has been found, similar to informa-

tion seeking in other unstructured problems [150]. Reverse engineering executable

programs is an interactive activity, which requires gathering and interpreting infor-

mation from reverse engineering tools, and using the tools to manipulate parts of the

system being studied [22, 92].

2.6.2 Types of Reverse Engineering Information. Reverse engineers gather

information about programs from a number of software applications commonly re-

ferred to as tools. These tools and their representations provide the task environment

in which reverse engineers’ activities are situated. The task environment includes the

debuggers, disassemblers, hex editors, and other tools with which the reverse engineer

gains information about and interacts with a program under study.

40

Information elements presented in reverse engineering tasks are dynamic in how

they are represented, how they can be decoded, how they are executed, how they can

be accessed by a person, and how they change with other elements. The information

elements in reverse engineering tools change according to time, space, value and con-

text. Additionally, elements in reverse engineering environments are coupled to other

elements such that making changes in one part of the environment affects other parts

without providing feedback to the user.

There are a number of types of information presented by a typical reverse engi-

neering task environment. For two popular environments, the OllyDbg debugger [140],

and Hex Rays’ IDA Interactive Disassembler [88], some of the main representations

are:

• Assembly instructions,

• Data bytes,

• Observable features,

• Control flow information, and

• Functional information.

2.6.3 Assembly Instructions. Reverse engineering a program from its exe-

cutable form is often required when the provenance of the program is unknown and/or

the source code of the program is unavailable. This is the case in problems such as

malware analysis, vulnerability discovery, or system assessment. When source code is

not available, reverse engineers work with assembly language representations of pro-

grams and with data residing in the computer’s memory directly. Programs contain

many thousands of assembly language instructions. Assembly instructions perform

operations on memory and the processor and have very close mappings to machine

code understood by the processor [187], [87]. The x86 family of instruction set archi-

41

tectures2 is large and complex and provides hundreds of individual instructions. Most

instructions are data movement, arithmetic, or control-flow operations [97].

Assembly code lacks most programming abstractions which are in higher-level

languages and which many programmers are used to [182]. Many professional reverse

engineers consider assembly language representations the major characterizing feature

of reverse engineering activities [65], [91], [92].

Assembly languages themselves are the source of some complexity. On pro-

cessors based on the x86 architecture, the byte sequences of assembly language in-

structions represent operations that a disassembler can translate into register names,

memory operands, or instruction opcodes such as push, mov, jmp and call. In x86,

different assembly instructions may produce the same effects on a system. For ex-

ample, the nop instruction performs an exchange between the value of a register and

itself, producing no side effects on the state of the program besides incrementing

the instruction pointer [97]. Any other set of instruction with no side effects can be

considered equivalent to the nop instruction.

Instructions also have variable length bytes that can make disassembly challeng-

ing. The operation the processor executes when it interprets an instruction can vary

depending on byte sequences embedded in the instructions like the instruction prefix

or the MOD R/M byte [97]. The x86 architecture allows flexible addressing where the

instruction pointer can read an instruction starting at any addressable byte, even one

that falls in the middle of another instruction [97]. This means a multi-byte sequence

can represent several instructions, depending on the first byte read.

2.6.4 Program Data. Program data is also the source of some complexity.

Programs contain data mapped in various sections of the program’s virtual memory

space. A string of bytes in a program’s data section simultaneously represent several

2Because of the wide use of x86-based processors in desktop computers, the 32-bit x86 instruction
set architecture is used to describe assembly language representations. Many of the same concepts
apply to other instruction set architectures, such as PowerPC, MIPS, SPARC, and ARM.

42

different structural interpretations. Like instructions, the interpretation of data bytes

depends on which byte is read first and what data type the bytes represent [16]. The

same sequence of bytes can represent a program-specific data structure, integers, or

floating point values, which the program reads and passes to a function as arguments,

pointers to other memory locations, a string of ASCII characters, or executable in-

structions. Reverse engineers must be able to determine how data is used in addition

to determining what data is used by instructions in a program. Other data that

represents a program’s state include:

• Values in the processor’s registers,

• Values on the program’s stack memory,

• The processor’s flag values, and

• File or registry contents the program may access and change.

2.6.5 Observable Features. Assembly-level representations of programs en-

able collecting low-level observable data about how software interfaces with the oper-

ating system and hardware. Observations made through instrumentation of programs

or operating systems can provide additional sources of information. Running pro-

grams have directly observable changes like windows that open, files that are created,

and information or affordances that change in the the programs’ displays. Reverse

engineers can use these observations to make inferences about program behaviors and

to find the locations of code that cause those behaviors.

Some program or system changes are not directly visible, but can be detected by

using tools to seek information about the changes. Tools that list running processes,

list windows or files that are open, and display the processor’s workload provide

information about non-visible program changes. Monitoring tools that come with

operating systems can provide some of this information. If built-in tools do not

provide the right information or are not trusted, reverse engineers can use other

43

third-party tools or write their own tools to gain more information about programs.

Writing tools for this purpose is referred to as instrumentation.

2.6.6 Control Flow Information. Reverse engineering tools present con-

trol flow information which visually represents logical relationships within programs.

Control-flow information allows people to infer causality between different instructions

in a program and between different blocks of instructions. Control-flow relationships

are often presented in graphs or control-flow diagrams that provide visual cues to help

decompose programs in meaningful ways. IDA provides the ability to step through a

control flow graph view in a debugger in a representation similar to the one shown in

Figure 7.

In Figure 7, each block has a small number of instructions and goes to one or

more blocks. In the top basic block of the figure, a comparison is made between EBX

and the immediate value 49h, which subtracts 49h from EBX and sets the zero flag if

the answer is zero. If the zero flag is set, then the next instruction jumps to the path

to the right. If the zero flag is not set (the values are not equal), the next instruction

jumps to the path on the left3. As a person debugs a program in the graph in IDA,

upon reaching the jnz, jz, or jmp instructions, one of the departing arrows blinks to

indicate the path which will be taken.

2.6.7 Functional Information. Functional information breaks programs into

subroutines, instruction sequences, and basic blocks demarcated by control flow in-

structions like jmp or call. Functional decomposition allows reverse engineers to

abstract away details within functions and subroutines and view them as black boxes

where only the inputs and outputs need to be considered. Functional decompositions

also allow reverse engineers to assign meaningful labels to areas of programs to ascribe

meaning to those areas.

3Red and green arrows to indicate true and false paths are not shown in the black and white
diagram.

44

Figure 7 Graph-Based Debugging in IDA [88].

45

2.7 Summary

This chapter provided an overview of the research relevant to making sense of

programs from assembly language. First, it described Endsley’s three-level model of

situation awareness [68] in the context of reverse engineering. Next it described the

various processes of comprehension from the literature which represent tasks that can

be considered “sensemaking” tasks. After that, it explored the literature about under-

standing and representing mental models of problem solvers. Finally, it discussed the

literature in program comprehension and the application of that body of knowledge to

the problem of reverse engineering from assembly code representations of programs.

Situation awareness describes a “current” mental state involving the perception

of relevant elements in the environment, comprehension of the current situation, and

projection of future states (Section 2.2). Sensemaking refers to various processes

involving integrating background knowledge, conjecture, and information from the

environment and making inferences that can be described as the process to come

to a comprehension of the current situation (Section 2.2). Sensemaking is typically

envisioned as a cyclical process in which a person modifies and updates a mental model

to to provide updated information about items in the task environment (Section 2.3).

The mental models that people manipulate during sensemaking can be char-

acterized as procedural knowledge and conceptual knowledge, or alternately “how”

and “what” knowledge (Section 2.3). Various representational formalisms such as

schemas, frames, scripts, and plans have been designed to depict different types of

mental models in computer-readable form, but each representation has its own benefits

and drawbacks for representing different types of problem-solving behavior (Section

2.3).

When people attempt to understand programs from source code, they gather

information from the representations presented by source code, artifacts, documenta-

tion, and use it to update their mental model of what the program does and how it

works (Section 2.5). There are a number of processes believed to be involved in pro-

46

gram comprehension, such as abstraction, plan recognition, concept assignment, nam-

ing, annotation, tracing, recognition, and locating labels (Section 2.5). Researchers

have attempted to automate these processes directly, but have typically run into

problems with tractability (Section 2.5).

Finally, reverse engineers work from lower levels of abstraction than those pro-

vided by source code. In reverse engineering programs from executable representa-

tions, software reverse engineers must work from observations rather than from read-

ing descriptions (Section 2.6). This distinction may make the activities and cognitive

processes different than those typically considered in the program comprehension lit-

erature (Section 2.6).

The research literature does not address how reverse engineers make sense of

programs from executable representations. In order to determine how people make

sense of programs from assembly representations, a set of studies were carried out

to better understand reverse engineering tasks, to learn what experts considered to

be the process, and then observing people as they performed reverse engineering

tasks. These studies include a case study of a reverse engineering situation, analy-

sis of semi-structured interviews with subject matter expert reverse engineers, and

an observational study. The overall methodology approach is described in Chapter

3. After that, the case study is presented in Chapter 4, the subject matter expert

interview study is presented in Chapter 5, and the observational study is presented in

Chapter 6. Following these chapters, Chapter 7 discusses the conclusions and areas

for future research.

47

3. Methodology

3.1 Introduction

An essential step to meeting the Air Force’s future goal of automating vulner-

ability assessments in complex systems is understanding how reverse engineers make

sense of executable programs. Chapter 1 introduced the research problem and moti-

vation and Chapter 2 reviewed and synthesized the relevant literature.

This chapter outlines an integrated sequence of studies to determine how con-

ceptual and procedural knowledge are used in reverse engineering tasks. First, the

overall methodology is described to justify why this methodology is the most ap-

propriate for answering the research questions (Section 3.2). Section 3.3 describes a

case study methodology to understand the conceptual and procedural elements in-

volved in a reverse engineering situation. Following that, Section 3.4 describes the

design of a semi-structured interview methodology to determine and organize the

high-level procedural and conceptual elements that experts believe are involved in

reverse engineering tasks. Section 3.5 outlines the design of an observational study

which collected data from participants performing reverse engineering tasks to elicit

and represent low-level processes of sensemaking in a conceptual theory.

3.2 Design of the Overall Methodology

To adequately study how reverse engineers make sense of executable programs,

multiple research methods are used. Using multiple methods produces converging

evidence which provides stronger support for theoretical descriptions of phenomena,

particularly when those methods are qualitative in nature [46]. In this dissertation,

three different research methods are used to understand how people build and reason

about their mental models of programs when reverse engineering programs from exe-

cutable representations. The three methods are a case study to investigate a reverse

engineering situation, a semi-structured interview study with subject matter experts,

and an observational study where reverse engineers were observed performing the

task.

48

Knowledge elicitation (KE) methods are systematic approaches to understand-

ing aspects of human information processing, decision making, and problem-solving

[90]. KE methods have been used to study cognitive work of pilots [68], air traffic

controllers [177, 69], unmanned aerial vehicle recovery teams [62], nuclear power plant

workers [160], electronic warfare technicians [127], nurses [55], and fire fighters [112].

There are a number of KE methods, each with their own aims, outputs, benefits,

and limitations [52]. In some cases, KE methods are used to uncover the processes

underlying human intelligence [135]. In others, KE methods are focused on captur-

ing the requirements for knowledgeable performance in a task in order to augment

human performance in error-prone or difficult activities [69]. Some KE methods are

used for generating domain-specific training requirements [45, 129] or to train people

to make better decisions under uncertain conditions [54, 128, 127]. Others provide

decision inputs to system design [68, 129], aid researchers in developing models of task

interaction for user interface design [38], or develop computational cognitive models

of performance in a task [38, 98, 194].

A number of overarching methodologies under the umbrella of “cognitive task

analysis” prescribe standard sets of KE methods which have been found useful for

training, system design, and process improvement purposes [55]. The outputs of

cognitive task analysis include tables and descriptions of knowledge demands [127],

collections of subtle decision cues that have been important in critical incidents [54],

expert and novice solutions to problems [129], and ideas to aid in curriculum develop-

ment or training needs [45]. While potentially useful, the purpose of the dissertation

is not to develop training or system design recommendations. Instead, the purpose of

this dissertation is to understand the conceptual and procedural elements of knowl-

edge involved in reverse engineering executable programs and how those elements are

organized.

Very little foundational research has been done concerning how people reverse

engineer executable programs. However, from the literature review in Chapter 2, it

49

is clear that software reverse engineering is a complex problem-solving task that in-

volves integration of background knowledge with situational information from reverse

engineering tools to learn about the properties of an executable program of interest.

Because of these features of software reverse engineering, the research problem in this

dissertation required methods that allow learning about situations involved in reverse

engineering tasks, knowledge involved, and the actions that are performed. For that

reason, the methods in this dissertation research include:

1. A case study of a software reverse engineering task to examine the information,

affordances, goals, knowledge, and hypotheses involved in a situation surround-

ing a reverse engineering task,

2. Semi-structured interviews with subject matter expert reverse engineers to ex-

amine common goals, standard approaches, steps in reverse engineering tasks,

and knowledge requirements, and

3. Observation of reverse engineers in a “think aloud” study to examine the be-

havioral processes involved in a reverse engineering task.

Research efforts to understand other complex problems involving cyber secu-

rity have used case studies [31, 84] and subject matter expert interviews [27, 58] to

describe the structure and content of the domain as well as the contexts in which

decisions are made. Additionally, empirical studies in the program comprehension

literature have relied on observational studies to learn about participants’ mental

models and processes [203, 202, 205, 201, 13, 53, 200, 83]. Case study methods can

provide information about the situational context of problem solving, subject matter

expert interviews provide information about task characteristics, and observational

studies provide information about knowledge and processes involved which makes

these methods well-suited for the research in this dissertation.

Since the methods used in this dissertation are qualitative, they involve inter-

pretation from the researcher to detect patterns and uncover hypotheses [142, 66].

This is a strength of the methods in that they allow rich description of a phenomena

50

of interest that is not possible with an experimental approach [211, 18, 81]. However,

the expressive power comes at the cost of a loss of control over variables which can

introduce bias in the data collection and interpretation [48] and potentially limit the

applicability outside the selected case [66]. Bias must be minimized or controlled as

much as possible in order to allow for robust conclusions to be made from analysis of

qualitative data [211, 117, 48]. For this reason, each of the methods in the dissertation

are used to establish and reinforce the findings of the others [128, 56]. In addition, the

steps of the various methodologies and logic used in linking data to conclusions are

presented in detail to allow readers to evaluate the merits of the analytical approach

and to be able repeat the research and obtain generally similar results [211].

Qualitative analysis allows the researcher to discover patterns and themes in

the data [142]. A qualitative approach was used to analyze the data from the studies

in this dissertation and to integrate it together to answer the research questions.

Quantitative methods were used when possible to provide additional confidence for

the qualitative interpretations. In the next three sections, the design of each of the

studies are described. In the following three chapters, the data and analysis from

these studies are presented.

3.3 Study 1: Case Study

A case study of a reverse engineering situation was first conducted to understand

and narrow down potential elements of conceptual and procedural knowledge and to

identify where they originate. The study investigated the task of reverse engineering

a program using the OllyDbg debugger [140] to determine the situational factors

involved in reverse engineering an executable program.

A case study was needed as part of the overall methodology because the variables

of interest as to how people make sense of executable programs were not clear at the

outset of the research. The case study is also needed because there is no detailed

examination of situational factors involved in making sense of executable programs

found in the research literature (see Chapter 2). The case study presents analysis

51

of video and audio data captured from screen recordings of a reverse engineering

task performed by the researcher, analysis of verbal data taken from the task, and

an investigation of information and affordances in the task environment used by the

researcher in the task.

3.3.1 Motivation for Using a Case Study Method. Case study methods are

used often in exploratory research because they excel at helping researchers uncover

variables and potential causal relationships in a domain of interest [211]. A case study

is ideal for answering “how” and “why” questions and for gaining deeper insight into

the nature of a problem and into complex issues [18].

Case study methods have a number of defining characteristics which set them

apart from other research methods. Hitchcock and Hughes [89] characterize case study

methods as those in which the researcher is “integrally involved in the case” and which

provide “rich and varied descriptions of events” that involve the chronological relation

of relevant events, the combination of descriptive and analytical views of the events,

focus on the individual actor and the actor’s interpretation of events, and which

indicate specific events in the case for attention.

Case studies attempt to portray the experience of being a part of the particular

situation [78]. Benbaset, et al. [18] investigated case study methods in information

systems and found that researchers use case study research to provide answers to

problems “in which research and theory are at their early, formative stages.” Case

study research was also found to be appropriate for “sticky, practice-based problems

where the experiences of the actors are important and the context of action is critical”

[18].

3.3.2 Relation to the Research Questions. The problem of understanding

how people make sense of executable programs involves situational and contextual

factors, and theory in this domain is at an early stage of development. The case study

was chosen for the research problem in this dissertation because the problem involves

52

primarily exploratory research [48]. In exploratory research, case study methods

provide tools to allow the researcher to develop and build theory at the same time

[18] and to become as familiar as possible with the domain and the experience of the

participants while maintaining an objective stance [48].

Solving the research problem of the dissertation involves understanding the con-

ceptual and procedural elements involved in reverse engineering tasks. The verbal

record and the model of the situation can be used to determine conceptual elements.

The case study was the most appropriate method to generate this type of in-

formation because theoretical models of mental processing in reverse engineering ex-

ecutable programs do not exist (see Section 2.6 for a further discussion). Since the

variables of interest and causal relationships had not been established in the liter-

ature, it was not yet appropriate to attempt to apply experimental and statistical

techniques [211, 18].

Standing on its own, the case study method would provide information that was

useful in exploring possible ways that people can make sense of executable programs.

However, the findings in the case study were also used to develop the organizational

foundation for the rest of the dissertation. The case study data were used to develop

the interview questions used in the semi-structured interviews (Section 3.4) and in the

design of an observational study (Section 3.5). The case study data were also used to

define the characteristics of the program the participants would reverse engineer and

to determine what data to collect (see Section 3.5 for discussion of the design of the

observational study).

3.3.3 Unit of Analysis. In a case study, a case can be a series of events or

situational context [211]. In many case studies such as in Bryant [32], the case has an

organizational context which provides the backdrop for decisions, motivations, goals,

and more. In this case study, however, the context is a problem-solving situation

rather than an organizational context.

53

Case studies can be characterizes as either exploratory, descriptive, explanatory,

or improving types of designs [158]. Case studies can also be characterized as either

holistic or embedded and comprising either single cases or multiple cases [211]. Holistic

case studies are those in which the case comprises the primary unit of analysis, while

embedded case studies are those in which multiple units of analysis are studied within

a single case [211].

The method used in this study is an exploratory embedded case study design

aimed at understanding the situational context in which reverse engineering is per-

formed. In this embedded case study, the task environment, the task, and knowledge

components are the embedded units of analysis within a single case. The case in this

study is a situation in which a single participant (the researcher) reverse engineers a

type of program called a crackme from assembly language instructions.

Data collection methods in case studies can comprise either first degree, or direct,

methods which include examples and think-aloud protocols; second degree, or indirect

methods, in which the researcher does not interact with participants; and third degree

methods, in which the researcher studies available data compiled from elsewhere [118].

This case study involves first degree data collection through direct observations, a

think-aloud protocol, and analysis of the crackme program and the OllyDbg debugger.

The data collection methods in this case study involved the following:

• One participant (the researcher) completed a reverse engineering task and ver-

balized throughout the process of solving the challenge in a manner similar to

a “think-aloud” protocol.

• Video data from one of the three sub-tasks in the reverse engineering task was

analyzed to infer a sequence of task actions from observable information.

• The researcher’s concurrent verbalizations during the problem-solving process

were recorded and transcribed into a text document.

• The task environment and crackme program were analyzed to provide additional

information about the situation.

54

3.3.4 Analysis. Qualitative data analysis is used to analyze the results

from this case study. Two types of qualitative data analysis are hypothesis genera-

tion techniques and hypothesis confirmation techniques [176]. Hypothesis generation

involves the coding, “memoing,” and classification of the data, followed by examina-

tion of patterns and relationships in the coded data [163]. In hypothesis generation,

the researcher should not define “too many hypotheses” before the analysis has be-

gun [176, 163]. Instead the hypotheses are determined through an iterative process

of analysis, pattern recognition, and interpretation. Hypothesis confirmation tech-

niques, such as negative case analysis, triangulation, and replication, are then used

to establish hypotheses that have been generated [176, 163].

3.4 Study 2: Semi-Structured Interview Study

The second study undertaken was a qualitative analysis of semi-structured in-

terviews with subject matter expert reverse engineers following semi-structured in-

terviewing procedures as outlined in Wood [208]. To understand the elements of a

complex task, it is often valuable to consult experts who have a great deal of ex-

perience performing the task [209]. Subject matter experts (SMEs) are people with

highly refined knowledge about their specific work domains which are well-tuned to

the tasks required in those domains [60, 90].

Semi-structured interviews are interviewing techniques where the questions fol-

low a format in which all participants are asked the same questions in the same order,

but the participants are permitted the opportunity to further describe and elaborate

answers to the questions [55, 209]. Additionally, semi-structured interview meth-

ods give researchers the ability to ask further questions or elicit examples to clarify

meanings [208, 51].

Semi-structured interviews allow researchers to elicit insights and rich qualita-

tive data from experts about the requirements and processes involved in task perfor-

mance [55]. SME interviews are also used to generate knowledge requirements of a

task [55], and to learn about the tools, automation, and processes used in a task [209].

55

SME interviews have also been used to generate design requirements for subsequent

observational studies [45], aid in the selection of prototypical tasks [208], and narrow

the focus of future inquiry [209, 112].

3.4.1 Purpose of the Study. Semi-structured interviews with SMEs were

used in this dissertation to determine the characteristics of reverse engineering tasks

and how they contribute to how reverse engineers generate and reason over men-

tal models of executable programs. Specifically, the characteristics sought from the

interviews were:

• The work domains in reverse engineering,

• Goals and activities involved in reverse engineering tasks,

• Decision points and information cues in reverse engineering tasks,

• Specialized knowledge requirements, and

• The role of automaticity and tacit knowledge in reverse engineering work.

These characteristics were chosen because, first, they were identified as the

components of knowledge-based problem-solving work from the literature (see Sec-

tion 2.3), and second, they were identified as areas where knowledge gaps existed

about how people develop and reason about mental models of executable programs.

Knowledge about these characteristics of reverse engineering would later be used as

factors to help decide on an appropriate reverse engineering task for the observational

study (Section 3.5).

The semi-structured interviews asked questions which were related to 1) the

concepts and processes involved in reverse engineering, and 2) the design of an obser-

vational study. The questions concerning concepts and processes involved questions

about the goals used in reverse engineering executable programs, the approaches in-

volved, how decisions are made, information and cues that are important in the task,

and elements of tacit knowledge involved. The questions concerning the design of an

56

observational study involved questions about the overall organization of problem do-

mains in reverse engineering, the knowledge required by participants, and specialized

tools and equipment used in the process.

The responses from the subject matter expert study were recorded, transcribed,

segmented, and coded according to qualitative analysis methods as described in Cohen

[46]. The coded data was analyzed from the concept level (sentence-based segmenta-

tion), and theme level (answer-based segmentation) to detect emergent concepts and

themes involving conceptual and procedural aspects of reverse engineering executable

programs as well as to provide information to assist in the design of the observational

study discussed in the next section. More detail about the design and analysis of the

subject matter expert study is presented in Chapter 5.

First, the design of the study is described, Next, the process by which the

interview data were analyzed is presented. Afterwards, the analysis of the interview

data is presented, and the themes emerged from the interviews are presented in the

context of how they help understand the conceptual and procedural aspects of reverse

engineering unprotected executable programs.

3.4.2 Design of the Study. Before the interviews were conducted, the study

was planned to ensure that the information would provide valuable information to

answer the research questions and not waste the SMEs’ time. This section describes

how the interview questions were constructed, how the interview questionnaire was

developed and pilot-tested, how the subject matter experts were selected, and how

the interviews were administered.

3.4.2.1 Development of the Interview Questionnaire. Before interview-

ing subject matter experts, the researcher conducted an extensive review of literature

related to computer security analysis, software reverse engineering, program compre-

hension and situation awareness. A portion of this literature review which is most

relevant to the research problem of the dissertation is recorded in Chapter 2.

57

Additionally, the researcher completed hands-on training in reverse engineering

and assembly language which provided a practical familiarity with the issues and

constraints involved in reverse engineering. The literature review, training, and results

of the case study were all used to determine the goal of the interviews and to aid in

developing the questions for the SME reverse engineers.

The questions were derived from knowledge elicitation-based interviewing tech-

niques presented in Wood [208] and Crandall et al. [55]. The complete list of questions

used in the interviews appears in Appendix B. The interview questions covered the

following areas:

• Work domains in reverse engineering,

• Goals and activities involved,

• Decision points and information cues,

• Specialized knowledge requirements, and

• Automaticity and tacit knowledge.

The interview questions were aimed at eliciting two primary types of informa-

tion:

1. Information about processes and knowledge used in reverse engineering and

2. Information to help design an observational study (Chapter 6)

Since the interview questions integrated these two types of information, they will be

considered together.

3.4.2.2 Purpose for Each of the Question Groups. The first group of

interview questions presented questions to get an overview of reverse engineering work

and the reverse engineering process. In this set, the SMEs were asked to provide an

overview of the different types of reverse engineering tasks they perform, to identify

five authentic types of problems an expert would be solve, to break down the reverse

engineering task into between 5 and 7 major steps, and to describe how different

58

steps in the process vary. These questions were derived from interviewing techniques

discussed in Crandall et al. [55]. The goal in this group of questions was to break

down the overall process of reverse engineering into a hierarchy of smaller processes

which can be considered “sub-tasks” or “sub-processes” within the larger scope of

reverse engineering work. The answers to these questions were intended to provide

an additional source of information to support the findings concerning the goals and

plans involved in reverse engineering task from the case study (Section 4.4.2).

The next group of questions related to the goals and sub-goals used in reverse

engineering tasks themselves. The SME participants were asked what they consider

to be their main goals while reverse engineering, how they approach a plan to carry

out those goals, what cues tell them when they have to change their approach, and

how their approach to reverse engineering has changed from when they first started.

The purpose of these questions was to provide yet another source of information with

which to triangulate the results described from the analysis of goals in the case study

(Section 4.4.2) and also to aid in structuring a procedural decomposition of the general

executable program understanding task.

The third group of questions involved decisions and decision cues in reverse en-

gineering tasks. The participants were asked to describe difficult decisions they have

had to make in reverse engineering, when these types of decisions appear, what cues

tell them they will have to make those decisions, how they determine the different

options, and how they choose between the different options. This series of questions

was also intended to help aid in the procedural decomposition of the reverse engi-

neering task, but from the aspect of how reverse engineers use and seek information

to support their decisions in the task. From this, the interview was intended to elicit

the types of information sought and how it affects the procedural aspects of the task.

The elements of information-seeking and use can be thought of as a second source

of information to support the results from the case study, and to help establish the

external validity of those findings (Section 4.4.4).

59

The fourth group of questions discussed the specialized knowledge used in re-

verse engineering software. SMEs were to describe a particularly difficult or complex

reverse engineering task they had performed. They were to describe the aspects that

made it difficult and the conceptual knowledge that helped them tackle the problem.

They were also asked about skills, abilities, and conceptual knowledge that separate

experts from novices. This group of questions was intended to provide additional

support and guidance in organizing the conceptual knowledge involved in reverse en-

gineering software. It also provides an additional source of evidence to support the

findings in the case study (Section 4.4.6).

The fifth group of questions involved specialized tools and equipment involved in

reverse engineering tasks. The SMEs were asked to describe standard and specialized

tools they use and to discuss the capabilities they provide. They were also asked

to describe their reverse engineering set up, their must-have tools and equipment,

and the information and capabilities that these tools provide to them. This set of

questions was intended to provide support for the choice of task environment used in

the case study (Section 4.2) and to provide practical guidance for the construction of a

reverse engineering task for participants to solve in the observational study (Chapter

6).

The final group of questions involved tacit knowledge and automaticity in task

performance. The SMEs were asked what types of decisions or steps that have become

automatic. They were also asked what steps in the process would likely be difficult for

a novice without significant experience reverse engineering. This set of questions was

intended to help determine the procedural aspects of knowledge that may be difficult

to elicit in the observational study, and to identify conceptual or procedural elements

that may have been missed in the think-aloud protocol used in the case study (Section

4.4).

3.4.2.3 Pilot-Testing of the Questionnaire. The interview question-

naire was pilot-tested with four software and hardware reverse engineers to ensure

60

the questions made sense and would generate the desired information. Additionally,

the questionnaire (as well as the design of the overall methodology) was vetted by

the researcher’s institutional review board (IRB) in the course of a human subjects

exemption process. The IRB members validated the appropriateness of the questions

and provided helpful guidance on the overall methodology. The IRB documentation

is presented in Appendix A and the full questionnaire is found in Appendix B.

3.4.3 Selection of Subject Matter Experts. After the questionnaire was

developed, vetted, and approved, five subject matter experts reverse engineers were

identified from government and government-support contractor reverse engineers who

attended the Reverse Engineering Workshop sponsored by the Department of Defense

Anti-Tamper and Software Protection Initiative Office in January of 2010 or who had

performed reverse engineering tool development research for that office. The duties of

the reverse engineers in this group primarily consist of performing reverse engineering

and anti-tamper related work and have established reputations with the Department

of Defense. Within this group, five SMEs were asked to participate based on their

reputation among their peers as experts and based on their level of experience reverse

engineering software, a method used commonly in other subject matter expert studies

[55, 56].

Each SME held an advanced degree in computer science or a related subject and

had several (six to 12) years of hands-on experience in software reverse engineering.

Additionally, each SME had also developed large-scale software programs to automate

or improve the capability of their own reverse engineering task performance, so it was

anticipated that they would be intimately familiar with the details of their own process

and have helpful insights into the general process of reverse engineering executable

programs.

The five SMEs were distinct by geography, training, education, and employ-

ment. The SMEs resided in four different areas of the United States. Each of the

SMEs learned reverse engineering through a combination of self-motivated practice,

61

college coursework, and duties involved in their employment. They received training in

reverse engineering from different sources, with three being completely self-instructed

and another two gaining reverse engineering experience as an extension of other low-

level engineering or security work, which varied greatly. None of the SMEs attended

the same college for their undergraduate or graduate degrees, and all of the SMEs

worked for different organizations (as government employees and civilian contractors).

To protect the privacy of the interviewees, the SMEs are identified as SME 1, SME

2, SME 3, SME 4, and SME 5 throughout the chapter.

3.4.4 Administration of Interviews. Each interview lasted approximately

two hours and was conducted between February and May 2011. Two of the interviews

were conducted in person and three were conducted over the telephone. In all cases,

during the interview session the researcher took notes to outline the general themes

in the answers to the questions and to capture critical concepts. All of the interviews

were recorded with a mini-cassette recorder.

When administering the interview, after providing a few moments to get situ-

ated, the researcher read the participants the purposes of the study from the interview

instrument. If the SME had no questions or concerns, the researcher asked each of

the SMEs the questions without as little variation as possible. If the SME did not

understand a question, or asked for the researcher to be more specific, clarification

was given, but no other elaboration or description was offered.

Participants were given as much time as needed to answer the questions and

provide examples, but were not guided by the researcher. If the researcher did not

understand the SME’s answer to the question, the researcher asked for clarification

using generic requests such as “what do you mean by X,” where X is the concept

in question. The terminology and responses given by the subject matter experts was

carefully reviewed and noted in order to prevent the researcher’s pre-existing views

of reverse engineering to interfere with the findings of the study. Specifically, the

researcher was cautious to not use terminology in the interview which came from

62

previous experience or previous interviews so that ideas, information, terminology,

and the organization of concepts were not transferred from one SME to another

through the researcher’s interactions. As soon as possible after each interview was

completed, the researcher transcribed the interview into text documents for further

analysis.

3.4.5 Controlling Threats to Validity. To reduce potential bias from trans-

lation competence [208], in which the experts’ responses are filtered through the re-

searcher’s conceptual lens before being presented, recordings and transcriptions were

used to capture the terminology and findings of the study. Whenever possible (or

where human comprehension was not necessary), automated methods were used to

extract and organize the interview data. To avoid the potential bias from leading

questions in which information from one participant flows by translation to the inter-

viewer into subsequent interviews [208], a standard set of questions was used in each

of the interviews. Additional questions were kept short and only asked in order to

provide clarification or to get the SME participant to elaborate on a response. Addi-

tionally, to reduce potential bias from relying on one expert’s viewpoint, five experts

from separate areas were consulted and the data from each of their interviews was

treated as impartially as possible. Detailed results from the subject matter expert

interview study is presented in Chapter 5.

3.5 Study 3: Observational Study

An observational study was conducted where software reverse engineers per-

formed a reverse engineering task during another “think-aloud” study. The data from

the observational study was coded and segmented as in the case study above, and

was analyzed to determine the conceptual and procedural aspects of reverse engineer-

ing executable programs (as well as to verify the information about conceptual and

procedural aspects identified from the case study and subject matter expert study).

63

From the observational study, the participants’ performance in the task was

analyzed and interpreted to characterize the conceptual and procedural elements of

their problem-solving processes as they sought to reverse engineer a program. The

details of the design and analysis of the study are presented in Chapter 6 and the

integrated conclusions of the dissertation are presented in Chapter 7.

The third study involved carefully studying people while they performed a chal-

lenging reverse engineering task. Watching people perform tasks can provide data

about how they solve problems rather than how they think they solve them [135, 72].

When watching task performance, it is useful to have the participants verbalize their

thoughts so they can be recorded and transcribed [72].

Verbal data from an observational “think aloud” study can indicate reasoning

strategies that people use in problem solving, as well as the concepts, hypotheses,

and information they use in the tasks [99, 214]. All of this information provides

researchers insight into participants’ mental models [55, 162]. Observational data

allow researchers to infer goals, reasoning strategies, memory retrieval, and decisions

used in the task and can aid in the mapping of a participants’ actions to conceptual

knowledge [199]. Thinking aloud during task performance has also been found to not

significantly interfere with underlying cognitive processes as long as participants do

not attempt to explain their thinking [72].

3.5.1 Relevance to the Research Problem. The purpose of this study was

to develop a theory of program understanding from the observations of reverse engi-

neers performing a reverse engineering task. The theory would relate the behavioral

processes of reverse engineers in terms of transitions between abstract “states” in a

person’s problem-solving process. The theory can generate testable predictions about

procedural knowledge in reverse engineering for future empirical study and provide a

way to move toward reverse engineering tools that can learn and interact with their

task environment.

64

3.5.2 Design of the Observational Study. In the observational study, reverse

engineers performed a complicated task in which they were to analyze a program

without having access to source code or documentation about the program. They

were to reconstruct the functionality of an algorithm within the program by figuring

out how the program worked from its assembly language representations. The ob-

servational study was carried out using a think-aloud protocol in which participants

verbalized their thoughts as they reverse engineered the program.

In order to design the study so it answered the research questions appropriately,

care had to be taken in the design of the task, the solicitation and instruction of

participants, and the design of the data collection. First the selection of the task is

described, then the solicitation of participants, and finally the methods of participant

selection and instruction.

3.5.3 Selection of the Task. After undertaking the case study and con-

ducting the subject matter expert interviews and literature review, it was clear that

several considerations needed to be taken into account in the selection of the reverse

engineering task used in the observational study. These considerations included:

• Choosing a domain - the approaches used in reverse engineering depend on the

problem domain, but the domain of analyzing unprotected programs contains

most of the comprehension aspects of the other domains of software reverse

engineering.

• Factoring out prior knowledge - the primary elements of knowledge used in

reverse engineering are knowledge of the assembly language, knowledge of the

system call interface of the relevant operating system, and knowledge of how to

use the tools.

• Sufficient challenge - the task should be difficult enough to be challenging for the

participants, but should not contain so much detail that the analysis revolves

around the details rather than problem solving in the task.

65

• Unclassified information - the task should not present issues which would intro-

duce classified information or require the classification of the study.

Each of these considerations were taken into account when investigating whether

to use a vulnerability analysis task, a malware analysis task, a software protection

task, or the analysis of an unprotected program (the four domains which, as will be

discussed in Chapter 5, were identified from the subject matter expert interviews).

It was determined that using either a vulnerability analysis, malware analysis, or

software protection task would limit the amount that could be learned about the

general understanding of executable programs because each of those domains require

much additional domain knowledge.

More complicated tasks would also make it more difficult to find participants

with the skills to complete the task, and it would unnecessarily burden the participants

in the study. Additionally, with vulnerabilities, malicious software, and software

protection tasks, there was the concern that either the techniques observed or the

findings could result in the classification of the research, which was undesirable.

Once it was decided to use an unprotected program for the study, additional con-

cerns involving the availability and legality of reverse engineering an existing program,

the participants’ potential familiarity with the program, the size of the program, the

desired difficulty of the task, and additional knowledge that would be required of the

reverse engineers were all considered. Consideration of all of these factors led to the

decision to use a crackme program, which is a program that is specifically designed

for people to reverse engineer. The crackme program that was chosen was selected

because it was expected to be unfamiliar to the participants, the goal of the crackme

would be easy for participants to understand, and it would still be challenging enough

for the participants to take at least an hour to solve it.

3.5.4 The Angler Task. The participants were told to complete a crackme

problem called Angler that was downloaded from the crackme.de website [172] in

66

February 20101 (Figure 8). Angler is a type of crackme called a keygen (standing for

key generation), a program which in a typical example presents the user with two

text boxes: one for the user’s name and one for the user to enter a serial number.

The person is to reverse engineer the code for the program, and then either discover

a valid key for a given user name, or write an algorithm that when given a user name

produces a valid license key that unlocks the functionality of the program.

In a key-based software licensing scheme, the program verifies whether or not a

user’s license is valid. The verification code in a program can be reverse engineered

to create an algorithm which produces a valid license key for a given name. This

kind of keygen challenge involves applying many of the skills and tools which the

subject matter experts indicated were also necessary for analyzing malicious software,

probing software for bugs and vulnerabilities, and understanding protections: namely

interpreting the functionality of a program and its behaviors from examining the

assembly instructions and system calls used in a program.

The Angler crackme program (Figure 8) presents the participant with a semi-

transparent visual window with two entries for text. It has three buttons, labeled

“Check”, “About” and “Exit.” The button labeled “About” simply brings up a

dialog box that says “Angler by Cyclops.” When a user submits a name and serial

number combination the application tests it for whether it is a valid combination. If

the combination of name and serial number are valid, the program presents a text

box saying “Correct serial! Now make a keygen and tut2!”

3.5.5 Selection of Participants. The researcher solicited participants for

the verbal protocol through an e-mail invitation sent out to the Air Force Institute of

Technology and to a cross-organizational reverse engineering working group represent-

ing organizations across Wright-Patterson Air Force Base. The solicitation produced

1Shortly after obtaining the crackme, the crackme.de website was taken down from the In-
ternet. The Angler program can also be obtained from the website of the program’s author at
http://cyclops.ueuo.com.

2“tut” is short for tutorial. The participants were instructed that writing the tutorial was not
important for the purposes of the task.

67

Figure 8 Main Window of the Angler Crackme Program.

four reverse engineers from the Air Force Research Laboratory, Aeronautical Systems

Center, and Air Force Institute of Technology. For logistical reasons, the solicitation

was limited to reverse engineers in the Dayton, Ohio area with access to Wright-

Patterson Air Force Base. Participation was voluntary, and no monetary incentive

was offered or given to the participants.

The participants were asked questions about their programming experience,

their experience in reverse engineering, and their educational background. The solic-

itation explicitly requested that participants have knowledge of reverse engineering

and experience using tools such as OllyDbg [140] WinDbg [125], Immunity Debugger

[96], and the IDA Interactive Disassembler [88]. These tools were identified as the

primary tools used in reverse engineering executable software from the subject matter

expert study.

The participants’ background knowledge in reverse engineering was not eval-

uated. Rather, the participants were instructed about the knowledge requirements

from the solicitation and self-selected to participate. Implications about the diversity

of the candidate pool are discussed in Chapter 6.

68

3.5.6 Data Collection. The task setup involved two computers, a participant

computer and a researcher computer. The participant computer ran a Windows XP

operating system that was hosted within a VirtualBox virtual machine. The virtual

machine image was preloaded with all of the software tools (aside from custom tools)

that were identified by the subject matter experts as important to solving reverse

engineering tasks. The tools included IDA, OllyDbg, WinDbg, Immunity Debugger,

PEiD [145], LordPE [49], and several other common tools.

The virtual machine also was loaded with reference documentation for the Intel

instruction set architecture, the Win32 application programming interface, the Mi-

crosoft Developer Network (MSDN) library, documentation for the C, C++, Python,

Java, and Lisp programming languages, and documentation to accompany the in-

cluded reverse engineering tools.

The participant’s task environment was instrumented to be accessed remotely

through another workstation by sharing the participant’s desktop over a virtual net-

work computing (VNC) connection using the TightVNC server and client software

[191]. The participant computer ran the virtual machine which had everything the

participant needed to perform the reverse engineering task and a VNC server, while

a machine in the same room, but on the cubicle opposite from the participant com-

puter ran CamStudio [36] software and a VNC client which enabled the researcher to

see all actions on the participant’s computer screen. The researcher’s computer was

outfitted with a microphone which was wired into the participant’s cubicle to enable

the collection of combined audio and video data. The researcher conducted the study

with himself as the participant in order to ensure all of the equipment worked properly

and the task would provide the appropriate level of challenge.

Each participant was scheduled for a single reverse engineering session to be

held in a data collection room on Wright-Patterson Air Force Base during July, 2011.

When making the appointment for data collection, the reverse engineers were given

the option to bring their own tools or tool plug-ins to be installed or to identify

69

tools and plug-ins that the researcher would install in the virtual machine in advance.

None of the participants expressed that this would be necessary given the reverse

engineering set up that was offered.

Each participant visited the building individually and was escorted to the data

collection room and given an overview of the research and instruction on how to ver-

balize thoughts during task performance. Each participant was explicitly instructed

to only verbalize his or her thoughts and to not attempt to explain the task or thought

processes. The researcher stressed the importance of only verbalizing thoughts rather

than explaining and demonstrated examples of poor, acceptable, and high-quality con-

current verbalizations with a simulated coffee-making task to help the participants

understand how they should verbalize during task performance. The participant was

seated at a small cubicle in an unoccupied, quiet room in front of the participant

computer which contained a mouse, keyboard, monitor, and the microphone. The

participants were instructed as to the different reverse engineering tools available, the

documentation available, and were permitted as much time as was needed to become

familiar with the task environment. Paper was also available so participants could

make notes, as recommended by Wood [208].

During the performance of the tasks, the researcher was seated out of the partic-

ipant’s view in the opposite cubicle. The researcher reminded participants to verbalize

when they fell silent for more than a few seconds using simple prompts such as “please

remember to verbalize during the task” and “remember to talk aloud” as discussed

in Trickett and Trafton [194]. Other than those reminders, the researcher was silent

throughout the task. The researcher also ensured voice and video capture worked

properly and eliminated other potential distractions (such as keeping the lights in the

room from automatically turning off during the participant’s session).

The researcher monitored each participant’s problem solving through the VNC

connection to the participant’s computer and took notes about the person’s goals,

apparent strategies, the concepts used to describe the problem, and problems faced in

70

solving the reverse engineering challenge or using the tools. Audio data of each partic-

ipant’s verbalizations and video data of the researcher’s computer monitor (showing

all actions on the participant’s computer monitor) were recorded using the CamStudio

software.

After the task, participants were asked to recall what they thought their strate-

gies were, what parts of the task they thought were the most difficult, what would

have made the task easier, and what they felt they needed to pay attention to. The

analysis and results of the observational study are described in Chapter 6.

3.6 Related Research

Other researchers have performed studies using similar methodologies to extract

knowledge of how people perform problem-solving activities in complex real-world

domains. Seamster et al. [177] performed a cognitive task analysis of air traffic

controllers to determine the elements of expertise. In that study, paper problem

solving, performance modeling, and structured problem solving were used to elicit

knowledge from 18 air traffic controllers consisting of experts, intermediates, and

novices. In these tasks, experts were found to use fewer strategies, but showed more

strategy types. Experts also showed more workload management than less experienced

air traffic controllers.

Roth et al. [159] performed a cognitive task analysis of how train dispatchers

manage and control trains to improve efficiency and safety operations. That study

involved two days of field observation, structured interviews with expert train dis-

patchers, and a second day of field observations. The results were used to determine

what aspects make train dispatching difficult. The results characterized activities

in terms of different strategies for adapting and planning ahead, maintaining a big

picture, and acting proactively.

Pirolli and Card [150] presents the results of a cognitive task analysis of sense-

making in intelligence analysis work. The paper alludes to interviews and verbal

71

protocols but does not describe their analysis in detail. The results attempted to

provide a “broad brush” characterization of the cost structure of trading off between

exploration and enrichment; trading off scanning, recognizing, and selecting items for

analysis; shifting attentional control; and performing follow-up searches.

Dixon et al. [62] performed a cognitive task analysis of unmanned aerial vehicle

(UAV) operators to include human factors into the system engineering design of un-

manned aerial vehicles. In that study, a goal-directed task analysis [68] was carried

out along with work domain analysis and a control task analysis. Some of the insights

gained from that task analysis were that maps used by ground communication person-

nel are not appropriate as input to the search mechanisms of the UAV system. It also

outlined that the team roles that UAV operator, video analyst, and ground searchers

have to play in performing search and rescue operations. The results from that task

analysis helped UAV developers ask the correct questions about how humans would

use the UAVs earlier in the development process.

Crandall and Getchell-Reiter [54] used a knowledge elicitation method called

the critical decision method to elicit indicators of sepsis from neonatal intensive care

nurses. Baxter et al. [14] performed a cognitive task analysis of a neonatal intensive

care unit. The task analysis collected data from context familiarization meetings, a

critical decision method [54], and observations. The paper describes the development

of a cue inventory, a situation assessment record, and a list of temporal issues.

Researchers have also studied how people understand programs, albeit with dif-

ferent aims and from different perspectives than those in this dissertation. Hendry et

al. [86] had 232 students sketch out how a search engine works in order to study their

mental models of complex systems. From this analysis, they constructed a conceptual

metaphor “a search engine is a series of text transformations.” Storey et al. [184] re-

searched programmers’ conceptual models in order to define design recommendations

to help people construct mental models when programming. The design recommenda-

tions were that programming tools should have elements to enhance bottom-up and

72

top-down comprehension, integrate bottom-up and top-down approaches, facilitate

navigation, provide orientation cues, and reduce disorientation.

Vans [200] watched maintenance programmers and classified their representation

of programmers’ mental models into the situation model, the program model, and

the domain model. In the top-down model, programmers chunk information about

the program, instructions, modules, the problem domain, and inferred plans and

synthesize it all into their existing knowledge base. The knowledge base includes

schemas of concepts and concept families used in developing the program model,

situation model, and domain model of a program [203, 202].

Fix, et al. [74] presented an experiment aimed at verifying five characteristics

of mental representations. These representations involved:

• The hierarchical structure of the program,

• An explicit mapping from the code to the goals of the program,

• The ability to recognize recurring patterns,

• Connecting pieces of knowledge, and

• Grounding concepts in the program text.

Each of these studies elicited knowledge through different combinations of in-

terviews, assessments, and observations to determine how people solve complex prob-

lems. This study describes a similar undertaking to understand the cognitive work of

software reverse engineers. Knowledge elicitation methods are the most appropriate

way to important to developing an understanding of how reverse engineers make sense

of programs. The methods are aimed at eliciting the goals and activities reverse en-

gineers undertake in their tasks, domain-specific knowledge and how it is used, and a

description of the process of sensemaking as applied to understanding programs from

assembly language.

73

Additionally, the knowledge and behavioral processes represented through this

dissertation can be used as descriptive accounts to provide the basis for more precise

models of cognitive processes in reverse engineering in the future.

3.7 Validity

The methodology was designed in order to maximize the validity of the research

results. Validity in qualitative research involves construct validity, internal validity,

external validity, and reliability [158]. Construct validity is concerned with how well

the measured variables reflect the concepts or “constructs” that are intended to be

measured [117]. Construct validity in this dissertation involves ensuring the quali-

tative methods and analysis methods represent the constructs of interest. The con-

structs of interest in this dissertation are elicited from the data in a bottom-up fashion

which is described further in subsequent chapters, so the validity of the constructs is

established within the overall methodology itself.

Internal validity involves the strength of the causal relations in the hypotheses

[117, 158]. Since the research methods used in this dissertation did not involve the

test of a hypothesis, internal validity relates to the hypotheses that were uncovered

in the course of this research. To ensure internal validity, the data from each of

the studies were collected carefully and systematically, and the data collection and

analysis processes are described in detail in Sections 3.3, 3.4, and 3.5 so they may be

replicated by other researchers.

External validity is a type of validity that deals with how well findings gener-

alize outside of the particular case being investigated [117, 163]. External validity

in this research method is established through conducting multiple studies to trian-

gulate the findings between them, rather than relying on a single study. The three

research methods provide three different sets of circumstances from which to evaluate

the elements of conceptual and procedural knowledge involved in reverse engineering

executable programs. The findings from the case study, subject matter expert study,

74

and observational study should converge to produce similar (or compatible) findings,

which they do.

Reliability concerns the extent to which the research is repeatable, particularly

by different researchers. Reliability in this research is established through careful,

controlled, and documented data collection, documentation of decisions made in the

research process, and explicit description of the logic linking the data to the conclu-

sions. These methods are described above and in Chapters 4, 5, and 6.

3.8 Conclusion

This chapter briefly introduced the three methods that were undertaken to an-

swer the research questions presented in Chapter 1. Situational, verbal, and observa-

tional approaches are used to collect data, and primarily qualitative analysis methods

are used to analyze the data, as is appropriate for an exploratory study. The research

methods involve seeking to understand the conceptual and procedural elements of

the task by analyzing situational aspects of task performance, talking in detail with

expert reverse engineers and watching reverse engineers perform reverse engineering

tasks.

The next chapter presents the case study of a situation in a reverse engineering

task referred to in Section 3.3. After that, Chapter 5 discusses the semi-structured

interview study with subject matter expert reverse engineers introduced in Section

3.4. Chapter 6 presents the data and analysis from the observational study introduced

in Section 3.5. Finally, Chapter 7 re-addresses the research questions introduced in

the dissertation and presents the results and conclusions from the overall methodology

approach.

75

4. Case Study of a Reverse Engineering Task

4.1 Introduction

The overall methodological approach of this dissertation, presented in Chapter

3, involves a case study of a reverse engineering situation, subject matter expert

interviews, and an observational study, all aimed at describing the conceptual and

procedural aspects of knowledge involved in reverse engineering executable programs.

This chapter presents the first study, a case study of a reverse engineering sit-

uation, to investigate the role of various conceptual and procedural aspects of the

situation in the process of reverse engineering an executable program. First, the

chapter outlines the methods used to collect, transform, and analyze the data used in

the case study. Then, it presents a situation from a simple reverse engineering task

and explores the task characteristics, task environment characteristics, and knowledge

characteristics that are involved with the task. Finally, the chapter then discusses the

results of the case study and its implications in the context of improving our under-

standing of how people make sense of executable programs.

This case investigates the situational factors involved in a reverse engineering

task. This study draws data from three primary sources:

1. Verbal data from a one-participant think-aloud protocol of task performance,

2. Analysis of a reverse engineering environment (the OllyDbg debugger [140])

used throughout performance of the task, and

3. Notes and diagrams taken during a number of subsequent completions of the

reverse engineering task.

A video recording of the computer screen during the task and the associated

verbalizations during the task were collected using the CamStudio screen capturing

software [36] with a microphone on a computer running a Windows XP operating

system [126]. OllyDbg version 2.01 was used as the primary reverse engineering

tool with the HxD hex editor [123] used for hexadecimal editing. This same task

76

environment was later analyzed for information content and affordances and was used

to complete subsequent unrecorded trials through the task in which notes were taken.

This section first gives an overview of the task, then it describes the data collec-

tion and analysis related to the think aloud protocol and the task environment. After

that, the situational elements of reverse engineering are discussed.

4.1.1 Reverse Engineering a “Crackme” Program. The reverse engineering

situation investigated in this case study is that of solving a simple reverse engineer-

ing challenge delivered in an executable program called a crackme. Crackmes are

executable programs which provide reverse engineers challenges to practice and hone

reverse engineering skills in a legal and ethical manner. A typical crackme is presented

as a small executable program packaged in a compressed file along with a text file

containing instructions on the objective and rules of the task.

Crackmes are developed in Visual Basic, C, C++, .NET languages, or directly

in assembly language. The tasks involved in solving a crackme can range in difficulty

from those that would be simple for a novice reverse engineer to those which would

be very challenging for a team of professional reverse engineers [172]. On various

websites, people can find crackme challenges that vary based on their difficulty to

complete, the operating systems they on which they run, the programming language

used to develop them, and the compilers used to convert them to machine code.

Crackme challenges can involve tasks such as:

• Finding a program’s serial number hidden in memory,

• Reverse engineering a cryptographic algorithm,

• Writing a key generation routine to reconstruct a serial number,

• Deobfuscating a program, and

• Subverting software protection mechanisms.

Reverse engineers examine crackmes from disassembled instructions with no

source code available [172].

77

4.1.2 The “Splish” Task. To simplify the analysis of the understanding task

(and focus on the aspects involved in making sense of the program rather than the

program itself), the crackme chosen is a from crackmes in the “very easy” category.

Also, the crackme is from a group of crackmes that the researcher had solved four

years previously, so the challenge was known to be easy to complete and not contain

malicious code.

The crackme challenge used in the case study is a program called Splish.exe.

Upon starting the program, a splash screen appears which is labeled “The Reverse

Engineering Academy,” which was involved with developing a series of reverse engi-

neering tasks for training reverse engineers on the website www.crackme.de[172]. The

application is 232 KB in size containing 237,568 bytes worth of instructions, data,

and uninitialized values (232 KB ×210 bytes per KB = 237, 568 bytes). Source code

for the program is not available, nor are debugging symbols.

4.2 Information and Affordances in the Task Environment

Before discussing the process of reverse engineering the executable, it is import

to understand the elements of the situation contributed by the task environment.

Data about the OllyDbg task environment was collected by inspecting the OllyDbg

debugger with the Splish program loaded in memory (together these constitute the

task environment for the majority of the task). Within each pane of the debugger’s

user interface, the various sources of information and controls were visited through a

breadth-first approach.

The elements were listed and categorized as to whether they represented infor-

mation elements, affordances, or both. Information elements were classified accord-

ing to the information type displayed (for instance “text,” “hexadecimal values,” and

“icon”) and the meaning of each of the information elements were characterized (for

instance “a comment about the instruction”, “the bytes representing the instruction’s

opcode”, “the current value of the instruction pointer”).

78

Information elements were identified as any simple or complex signals (like text

values, colors, or shapes) presented to the user. Because of their great number, the

individual values from the program (the program’s instructions and data values) were

not recorded. Instead, more abstract labels were given to represent the types of

information and affordances involved.

Affordances were identified as any user interface control with which a user can

change the state of the program, the debugger, or the representation presented. Ele-

ments that represented affordances in the task environment were classified according

to the actions required to activate them (for instance “click,” “double-click,” and

“mouse over”) and the functions that they performed (“set selected row,” “toggle

checkbox,” and “open comment dialog”). The affordances were described in terms

of their functionality. Because of the great number of affordances, the user interface

of the debugger was only represented in as much as it was exercised in the progress

of the reverse engineering task. OllyDbg is a robust and capable reverse engineering

tool, and it has a number of other features which provide additional information and

functionality which were not explored because they are out of the scope of the research

effort.

4.2.1 Information in the Splish Task. The OllyDbg environment presents

a lot of different information to a reverse engineer simultaneously. In OllyDbg, the

main window is the CPU Window, which consists of four primary information panes

(Figure 9):

• Disassembly pane,

• Register pane,

• Program stack, and

• Memory dump.

There is also an information pane directly below the disassembly pane which

provides status information related to the instruction selected in the disassembly

79

Figure 9 Information Presented by OllyDbg.

pane. Typical status messages include the calculated address offset for the current

instruction or the ASCII translation of a selected hexadecimal value. The status

messages vary depending on the type of instruction (i.e., JMP, PUSH, or CALL) that the

current instruction contains. Since each pane is re-sizable, the window can contain as

much or as little information as can fit on a person’s computer display (Figure 9).

4.2.2 Disassembly Pane. Depending on screen resolution and the size of

the pane, the disassembly pane can display many rows of assembly instructions (41

rows in Figure 9). Each row has an address field, a byte field, an instruction field

80

and a comment field. The address field contains a hexadecimal value representing

an address in memory such as 0x00403C3D or 0x760F081C. An address space in the

disassembly pane beginning with 0x0040xxxx tells the user that the program is likely

executing an instruction in the program’s code rather than code in a system library.

If the addresses in the disassembly pane begin with 0x7Fxxxxxx, the program is likely

executing a dynamic link library (DLL) such as NTDLL.dll or USER32.dll that the

program has mapped into its address space.

The byte field displays a variable number of hexadecimal bytes that correspond

to the instruction being executed. The bytes displayed represent the binary string

the processor takes as input during an instruction execution cycle. For example, the

instruction pointed at in Figure 9 is:

MOV DWORD PTR DS:[403478], EAX

The opcode for this instruction is 0xA37B344000, which the processor reads as five

bytes worth of binary values (0xA3 ,0x7B, 0x34, 0x40, 0x00) encoded in little-endian

format.

The instruction field contains the assembly language representation of the in-

struction bytes. Most instructions consist of an mnemonic and zero or more operands

to create an instruction opcode. The operands refer to registers, addresses in memory,

or immediate values [97]. The disassembler parses each of these bytes and determines

from them the instruction type (MOV), the source (EAX), and the destination. The

destination address is computed as the memory address in the segment pointed to by

the DS register with the specified offset (0x403478).

A light gray horizontal line in the disassembly pane indicates the currently

executing instruction. As instructions execute in the debugger, the gray line moves

down one row at a time until the program hits an instruction that changes control

flow, such as a JMP, CALL or RETN instruction. A person reads information from the

disassembly pane to understand the current state of the program, the instruction at

the current state and as one input for making inferences about the next state of the

81

program. The instructions are primarily what the user of the debugger reads in order

to understand and make sense of a program.

4.2.3 Register Pane. The register pane displays the labels and values of

several sets of general purpose registers (EAX, ECX, EDX, EBX, ESI and EDI), the stack

base pointer (EBP), the stack pointer (ESP), the instruction pointer (EIP), the EFLAGS

register, the offset pointed to by each of the section registers, and the eight floating

point registers. When a person pauses the debugger at an instruction, the register

pane provides the person with the value of the registers at that point in program

execution. The instruction pointer (EIP) displays a text label with the name of the

program module being executed, which gives the user an indication of whether the

program’s code is executing or whether code from a DLL is executing.

Information in the register pane changes very rapidly while the program exe-

cutes. The instruction pointer changes with every instruction and the stack pointer

(ESP) changes with every operation that modifies the program stack. The general

purpose registers change at nearly each instruction and the EFLAGS register changes

often to show status messages for instructions, exceptions, traps, tests, and conditions.

The changes happen so rapidly, that people are not able to pay attention to how the

registers’ values change when quickly stepping through a program’s instructions. If

a person is paying attention to the values of particular registers, it requires them to

slow down their debugging and mentally keep track of how the data flows to and from

CPU registers.

4.2.4 Program Stack. The stack pane has three columns, one for hexadeci-

mal values representing the memory address of a stack entry, a second for the stack

value itself, and the third column for text comments. The stack pane also contains a

large number of rows of stack contents (27 rows in Figure 9).

The stack and the stack pane change with each stack operation that the debugger

executes. When program execution traces into a function, the processor places the

82

instruction that follows the function call (the return address) onto the stack, and

when the function executes the RETN instruction the execution returns to that address.

When a value is pushed onto the stack, OllyDbg shifts down all of the contents of

the stack pane so that the new value pushed to the logical stack is at the top of the

stack pane. While a person steps through a program’s instructions in the debugger,

the program stack moves up and down rapidly, representing new values being pushed

to the top of the stack and old values being popped off the top of the stack.

Although the top of the stack pane usually corresponds to the top of the program

stack, the stack can me scrolled up or down, which can make it visually difficult to

indicate where the stack begins and ends. A person would have to look at the address

of the base pointer, find that address in the stack pane, and interpret the location of

that address as the bottom of the stack. If the person scrolls up or down, the stack

pointer is no longer at the top of the stack pane, so the person would need to calculate

the location of the stack pane as well. Since the stack moves at every stack-based

instruction this information constantly changes.

4.2.5 Memory Dump. The memory dump contains several rows of memory

data (32 rows in Figure 9). Each row in the dump pane has a four-byte memory

address and four columns of four-byte hexadecimal values corresponding to those

locations in memory. To the right of the four-byte memory dump, an additional

column in the pane provides an ASCII or Unicode text representation of the byte

values.

The bytes can correspond to any parts of a program’s data, but are typically

used to view data or resource sections (.data, .rdata, and .rsrc) mapped into a

program’s address space in memory. The program’s data sections are where strings,

global variables, and other less-frequently-changing items are stored in a program. In

a typical task, the top address could be 0x403000, which would normally correspond

to the offset of the .data section pointed to by the program’s file header.

83

Through the process of reverse engineering most programs, the values in the

memory dump remain relatively stable compared with the registers and the stack.

Memory values change when instructions move data directly into memory addresses

such as the MOV instruction above. However, when stepping through a program, the

debugger does not show which memory values are being read or modified. There is no

mechanism to have the screen scroll where memory is read or changed, so many mem-

ory related changes go without being noticed. The reverse engineers usually ignore

the memory values that are accessed and changed by instructions unless they noticed

and mentally linked the address value with some other meaning in the program.

4.2.6 Primary Affordances. The OllyDbg software has a number of affor-

dances related to file operations in the operating system (like most Win32 programs)

as well as a number of debugging-specific functions. The affordances that are most

commonly used are those corresponding to the “Step in,” “Step over,” “Rewind,” and

“Execute” functions.

Stepping into a program moves the instruction pointer one instruction forward,

and simulates the output of the instruction by modifying the registers, memory, and

any external files or data. If the program comes to a control flow instruction like an

unconditional jump (JMP) or a conditional jump instruction in which the test condition

has been met, then the instruction pointer will follow the jump to its target address.

Stepping over is similar to stepping in with the primary exception that when the

instruction pointer is pointing to a CALL instruction, the program does not follow the

CALL, but instead executes the code called by the CALL instruction and moves the

instruction pointer to the instruction directly after the CALL is returned.

4.2.7 Task Environment Summary. This section discussed the information

elements present in the OllyDbg debugger in order to talk about the various forms of

information and affordances used in the task environments. The information comes

in the forms of ASCII text, hexadecimal, instructions, decimals, and other values.

Each component of information presented by the task environment has a different

84

meaning, and it is up to the reverse engineer to use his or her knowledge to interpret

the contextual meanings of these informational symbols.

The next section walks through a reverse engineering task performed by the

researcher to motivate the discussion of other situational factors involved in under-

standing an executable program. Following that, verbal data from the task is analyzed

to look at the conceptual and procedural knowledge related to task performance.

4.3 Walk-Through of Performance in the Splish Task

In order to set the stage for investigating the role that the situation plays on con-

ceptual and procedural knowledge in a reverse engineering task, this section presents

a “walk through” of the situation for one portion of a reverse engineering task.

Performance in the Splish task was observed from video data of the researcher

performing the task and notes were taken to indicate the actions that are taken in the

task environment. Since the researcher performed the task, the researcher is referred

to as “the participant” when discussing performance in the task in order to disam-

biguate the roles of researcher and reverse engineer. Since eye tracking was not used,

the focus of the participant’s visual attention is indirectly inferred by elements like

the current instruction indicator when stepping through code and mouse movements

hovering over text, buttons, or other elements of the task environment, combined

with verbalizations that take place at the same moment indicating reference to the

location. Thinking, planning, and reasoning are inferred when the verbalizations do

not refer to objects that are visible in the task environment, but instead refer to

other elements, goals, plans, or things outside of the current focus indicated by the

participant’s mouse movements or other focus items in the task environment. Objects

as used in this sense refer to a thing or an entity, rather than the use of the term

in computer programming to mean data structures grouped with their functions or

methods. The term “object” is used throughout the dissertation to refer to things in

a program that do not seem like formal objects, but which are used as such by reverse

engineers (such as a sequence of instructions or code location).

85

Figure 10 The Splish Crackme Program.

4.3.1 Exploring the Program. At the beginning of solving the crackme,

the objectives of the challenge are not known. The participant starts the process

by loading the program in the debugger environment, which presents him with the

program’s assembly instructions. The participant looks at the code, and then decides

to run the program in the debugger to see what it presents to the user.

The participant sees a number of text labels, fields, and buttons. The first label

is “Hard Coded:” next to a text field, with a button “Check Hardcoded” beneath it.

The second two labels are “Name:” and “Serial:”, both of which have text fields to

the right of them, and with a button labeled “Name/Serial Check” beneath the two

text fields. The program has a menu ribbon with “File” and “Help” menus available.

The participant tries entering text in the fields and pressing the buttons, and

sees a dialog box that says “Sorry, please try again.” The participant continues this to

realize that entering anything but the correct serial number or a valid name and serial

number combination will result in the “try again” dialog box. The participant explores

the “File” and “Help” menus and finds an “About” menu in the “Help” ribbon.

Clicking the “Help” ribbon produces a dialog box with the instructions (Figure 10).

4.3.2 Determining the Goal. The participant reads the instructions for the

crackme, which make it clear that the goal of the Splish task is to:

86

Figure 11 Splish’s Embedded Instructions.

1. Disable the splash screen that appears at program start,

2. Find the serial number embedded in the application and , and

3. Reverse engineer the application’s serial number generation algorithm and write

a program that generates an acceptable serial number for any name (Figure 11).

The first task, disabling the splash screen, involves searching the program to

find a memory location in the program that creates and displays the splash screen

and then modifying the instructions at that location so the splash screen does not

appear. This requires navigating through assembly code to find a particular location

and mentally linking observable events in the program to memory locations in the

program where instructions carry out that functionality.

The second task is to search for a “hardcoded” serial number in the assembly

instructions and data of the program. This involves running or debugging the pro-

gram to determine its functionality at a high level, navigating through the program’s

assembly code to determine the different code structures, integrating high-level and

low-level information to determine the location of the algorithm that handles the serial

number, and tracing through the data flow of the serial number processing algorithm

to locate the serial number in the program’s memory.

The third task, making a “keygen” for the name and serial algorithm, involves

locating the name and serial number processing algorithm, tracing data flow through

87

the algorithm to determine how the algorithm works at a high level, and generating

a program which performs the functionality as the algorithm, but in reverse. The

program should be able to take any given name and produce a serial number for that

name which will be accepted by the program’s serial number processing algorithm.

All three of these tasks involve the combination of navigation, reasoning, iden-

tification and matching, and data flow tracing. The first task includes modifying the

bytes of the program, and the third task involves understanding and recasting an

algorithm by writing a program to perform the functionality. The first of these tasks

is examined in detail.

4.3.3 Determining an Approach. When the program is run, a splash screen

window appears with the title “The Reverse Engineering Academy” (Figure 12). In

order to disable the splash screen so the program starts without showing it, a person

has to:

• Locate the program’s code that presents the splash screen,

• Change the program so that the splash screen code has no effect, and

• Write the changes at the byte level to the program’s on-disk image so that all

modifications to the program will be in effect when the program is restarted.

If someone is able to successfully perform all three of these subtasks, the pro-

gram will not display the splash screen when it is started. The participant does not

have the knowledge of these subtasks from the beginning of the task. Instead, the

participant has to construct the task strategy while working in the task and gaining

more information from the task environment and from trying out different approaches

in the task.

When the participant runs the program from the debugger (or outside the de-

bugger) the first thing visible is the splash screen, followed by the main window of

the program. The participant presses buttons and manipulates the affordances of the

program in order to determine what the main goal of the task is. Once the goal is

88

Figure 12 Disabling the Splash Screen.

discovered, the participant has to develop a plan of action to solve the goal while

performing activities to gain more information from the task environment.

For the first of these goals (disabling the splash screen), it is unclear from

the start what the participant is to do, so the participant runs the program in the

debugger to see what happens. While running the program in the debugger, a person

gains information that helps connect the code from the assembly instructions with

the information presented by the events from the program. When an event from the

program corresponds to the debugger executing code at a particular instruction, the

participant can infer that the code at that instruction location caused the program

to perform that behavior.

4.3.4 Localizing the Splash Screen Behavior. The participant steps through

the code using the F8 keyboard shortcut or by pressing the “Step over” button.

Stepping over means the program will advance the instruction pointer, but not step

into the code referenced by CALL instructions. The participant encounters a CALL

instruction at the beginning of the program and presses F7 to step into the program.

The instruction execution jumps just a few instructions down, so the participant

continues to step over the assembly instructions in the program.

89

Stepping over the instructions, the participant is reading and interpreting in-

formation from the code. To the right of the assembly instructions, the debug-

ger presents information about system calls it has identified to the participant per-

forming the task. The participant sees red text labeled USER32.LoadBitmapA, and

GDI32.CreatePatternBrush, black text that says ASCII: Splish Class, and a red

label reading USER32.CreateWindowExA. The participant is pressing F8 and sees a call

to another red-labeled USER32 function when the splash screen suddenly appears.

4.3.5 Inferring the Cause of the Splash Screen Behavior. The participant

infers from the appearance of the splash screen that code has executed which controls

the presentation of the splash screen window. The participant has stopped pressing F8

and looks to the instruction currently pointed to by the debugger. Looking around the

area, the participant sees a CALL instruction labeled CALL <JMP.&USER32.ShowWindow>

at address 0x00401534. The splash screen is still being displayed with the instruction

at that location. Thinking about it for a moment, the participant sets a breakpoint

on the ShowWindow instruction, and presses rewind to restart the program.

When the participant restarts the program, the program execution lands on

the ShowWindow instruction. The participant looks at surrounding instruction for a

moment and presses F8 to move execution forward. As expected, the splash screen

appears.

4.3.6 Patching a Jump. The participant presses F8 a few times to get

below the ShowWindow instruction and thinks for a moment about what to do. The

participant scrolls back up to an instruction labeled PUSH 1 and double clicks on the

instruction which opens up a dialog box.

The dialog box is labeled “Assemble” and 0x0040153E, which is the address

of the PUSH 1 instruction. In the text field of the dialog box, the participant types

in JMP and looks for an appropriate address to jump to. The participant finds an

address, and reads off 0x00401588, which the participant then types into the text

90

field after JMP. The participant clicks the button labeled “Assemble” which modifies

the bytes of the instruction and then “Close” to close the dialog box.

The participant restarts the program in the debugger using the “Rewind” but-

ton, presses “Run” and then again hits the breakpoint at the ShowWindow instruc-

tion. The participant sees the instruction labeled PUSH 1 and notices that the changes

to the program were not persistent. After thinking for a moment, the participant

clears the breakpoint from the ShowWindow function and sets a new breakpoint a

few bytes earlier at an instruction labeled Call <JMP.&USER32.CreateWindowExA>.

The participant restarts the program and runs the program to the newly set

breakpoint. The participant again sees the PUSH 1 instruction, double clicks the

instruction to open the “Assemble” dialog, looks for an address to jump to and types

JMP 401583 into the text field, which assembles the bytes EB 48 into that instruction’s

address, replacing the PUSH 1 instruction with a JMP instruction targeted to a few

bytes below the ShowWindow system call. The participant closes the “Assemble”

dialog and presses F8 through a number of instructions and can see that the splash

screen does not appear. The participant presses F9 to execute the program, and the

main window of the program appears without the splash screen appearing.

4.3.7 Saving the Changes to Disk. Now the participant knows that patch-

ing the jump successfully disables the splash screen, the participant starts to persist

the changes into the executable by opening the program in a hex editor, finding the

appropriate bytes, and changing them. The participant opens the HxD hexadecimal

editor, and opens the Splish.exe file within the hex editor. In the hex editor, the par-

ticipant types Ctrl+F to open a “Find” dialog. In the “Find” dialog, the participant

sees a “Datatype:” label and an associated drop-down menu and selects “Hex-values”

from the drop down. With the OllyDbg window in view, the participant looks back

up to the instruction that was patched and reads off the byte string a311324000 of

the bytes previous to the bytes which were modified, while typing the byte values in

the text field labeled “Search for:” in the hex editor’s “Find” dialog (Figure 13) The

91

participant presses enter and the hex editor jumps to the a location in the program

where the bytes were found.

The participant reads off the bytes, identifies the bytes EB 43 which are to be

modified, and attempts to type in the newly modified bytes.

4.3.8 Handling an Error. When the participant types in EB 43, the hex ed-

itor generates an error message box labeled “Error: Cannot open file C:\Documents

and Settings\adam\Desktop\crackmes\Splish.exe for write access. The process can-

not access the file because it is being used by another process.” The participant reads

the error message, tries to click the “Retry” button, and gets the same message. The

participant clicks the “Cancel” button then thinks for a few moments to figure out

what to do.

The participant tries to resolve this by closing the file in OllyDbg and switching

to the hex editor. When the participant tries to insert the new bytes, the same

message appears again from the hex editor. The participant thinks for a moment

and then closes the file in the hex editor, and goes to open the hex editor again, but

realizes that he does not remember the byte string to search for. The participant

starts to open OllyDbg to find the bytes again, but then decides to check to see if the

hex editor retained the information.

The participant opens the hex editor again, and presses Ctrl+F and sees the

bytes a311324000 in the text field. The participant then enters opens the text editor

and types “search for: a31132400” so it will be available. The participant finds the

bytes in the hex editor, but does not remember the bytes that need to be modified to.

The participant opens OllyDbg, opens the Splish file, follows the same procedure as

before to find the instruction that was patched above the ShowWindow instruction

by pressing F8 and pressing F7 when landing on (CALL instructions that jump to

another location within the program rather than to a system function). Upon finally

arriving to the ShowWindow instruction, the participant sees that the breakpoint is

92

Figure 13 Finding the Bytes to Modify.

93

still set, which means the participant could have just pressed F9 and got to the desired

instruction directly rather than having to navigate to the instruction.

The participant patches the jump over the PUSH 1 instruction as before and

looks at the bytes that are generated by the assemble command. The participant

switches to the text editor and types “change to EB 43,” then closes the program in

OllyDbg, opens the hex editor, opens the Splish.exe program within the hex editor,

finds the location where the bytes are to be modified (as before), then types EB 43

over the bytes that read 6A 01. The participant saves the program by selecting “Save

as:” and entering a new name for the patched program: “splish nosplash.exe.”

4.3.9 Testing the Changes. The participant closes the hex editor, then finds

the splish nosplash.exe executable in a folder on the Desktop. The participant double

clicks the program, notices that the main window appears without the splash screen

first appearing. This tells the participant the first goal of the reverse engineering task

has been completed. The participant took 13 minutes and 4 seconds to perform this

portion of the task.

4.3.10 Summary of the Task Walk-Through. The reverse engineering task

used for this study was intentionally very easy, but the task still involved exploring

the program, determining the goal, determining an approach to accomplish the goal,

localizing an observed behavior, inferring the cause of a behavior, modifying the

program, saving changes to disk, handling errors, and testing the changes. Each

of these different steps involves a number of different planning, reasoning, problem-

solving, and information-seeking processes, which will be described in more detail

throughout the dissertation.

The next section describes the data collection the think-aloud protocol which

was used to systematically analyze the data from the participant’s trial to answer how

people make sense of programs. Next, the analysis of the information and affordances

of the task environment are described. After that, the following section presents a

94

framework to understand how elements in the reverse engineering situation interact

with conceptual and procedural knowledge.

4.4 Think-Aloud Protocol

A think-aloud protocol [72] was used to collect and analyze concurrent ver-

balizations during the task. The researcher transcribed the verbal data into a text

document and simultaneously segmented the data by breaking it into one segment per

line of text. Segmenting the data at the same time as transcription allowed the use of

contextual cues such as tone of voice, time between utterances, and current actions

observed in the video data to aid in discriminating segments. Verbalizations were

segmented to represent individual thoughts as is described in Trickett and Trafton

[194] and Chi, et al. [41] Thoughts were demarcated by the presence of natural time

breaks between utterances and in locations in which the focus of the verbalization

switched to represent a different idea.

After segmentation, the researcher coded the verbal segments. The categories

used to code the data were developed previously from a review of the literature on

sensemaking (Section 2.3). As in Table 1, segments were classified as to whether they

represented:

• Goals or plans (“G”),

• Hypotheses (“H”),

• Information seeking behaviors (“I”),

• Attentional focus (“F”), or

• Spurious verbalizations (“D” for “delete”).

Each segment must contain a code, but a segment could be coded with more

than one code if multiple rules applied to a single segment.

4.4.1 Categorization. Once all the verbal data from the task was coded,

segments representing each of the different categories of verbalizations (goals/plans,

95

Table 1 Coding Rules.

Code Rule
Goal / Plan Reference to a goal or plan that indicates past,

present, or future action taken by the
participant: “I’m going to jump into this value,”
“I can change this here”, “I put the 7 in”

Hypothesis Reference to a belief, which could be a guess,
reasoned inference, or a summarized or generalized
observation: “This isn’t going to work”, “The
next value is going to be 4”, or “All the values
are probably empty”

Information-Seeking Reference where the participant is searching for
information in the task environment: “Where
does this value go?”, “What does this jump do?”,
“What happens after the call returns?”

Attentional Focus Reference to some aspect of the situation,
the person’s mental state, problem solving state,
or state of the program / task environment:
“The value is 3”, “I’m lost”, “EAX has a 4”

Del Non-related verbalization, for instance “umm”
or “okay” by themselves, or “. . . ” which
indicates time passing

Notes Enter concepts you are not sure about and comments.

96

state-information, hypotheses, and information-seeking behaviors) were reviewed and

elaborated to detect emergent categories (more abstract classifications) with which to

characterize the coded segments (as described in Ryan and Bernard [168]).

For the verbal segments included in the goals/plans category, labels were as-

signed to the verbalization which represented the function that the goal or plan ap-

peared to serve in the task (such as “plan-approach,” “construct-goal,” “olly-close-

file,” or “set-breakpoint”). For the verbal segments in the attentional focus category,

the researcher provided labels that classified the type of information being moni-

tored in performance of the task (for instance “text,” “causal behavior,” “recognized-

structure,” and “surprise”). For segments in the hypothesis category, segments were

given labels that represented the types of hypothesis stated (for instance, “program

property,” “behavior,” “situation,” and “identification of object”). For segments in

the information-seeking behavior category, the segments were given labels describing

the type of information that was sought (for instance “recognized object,” “behav-

ior,” “location,” “text,” and “effect of action”). These labels represent organizational

categories which emerged from several reviews of the data to organize the data into

groups.

The numbers of segments from the different categories is presented in Table 2.

Individual segments were allowed to have multiple codes, so the total segment count

does not represent the sum of the segment category counts. Of the segments that

provided meaningful information, attentional focus segments comprised the largest

number of verbal segments (272 segments), followed by goal and plan-related segments

(138 segments), hypothesis-related segments (121 segments), and information-seeking

segments (50 segments).

4.4.2 Goals and Plans. A number of goals and plans were referred to in

the task (Table 3) The majority of the goals (47.1 percent) described goals that were

aimed at planning an actionable approach to achieve the current goal. Some examples

of these segments include the phrases “I could just patch a jump right here,” “I could

97

Table 2 Verbal Segment Properties.
Segment Category Number of Segments
Goal / plan segments 138
Hypothesis segments 121
Information seeking segments 50
Attentional focus segments 272
Deleted segments 123

Total number of segments 680

just nop the whole thing,” “I’ll set a breakpoint,” and “let’s go to the next one.” The

next most numerous category of goal-related segments represented the construction

of a goal representation (22 segments). In these segments, verbalizations such as “like

E4 or something,” “I want to change the PUSH 1 to jump,” “I need to let it call this”

represented the goal verbally by elaborating on the features or attributes of the goal

state.

Operating system-related goals and plans were those involving the common

functions of the operating system’s user interface, such as “open it up” (referring to

a file), “copy this out,” and “close the debugger.” Debugger-related goals and plans

referred to as “let’s close this and back up to the very start,” “F9 to get there again,”

“step over,” and “start stepping in.” These segments all referred to actions in the

debugger. Hex editor-related goals and plans involved elements in the hex editor in a

similar manner. The remaining three segments represented goals or plans of action,

but they did not fit into neat categories.

4.4.3 Hypotheses. There were also many hypotheses in the verbal data (Ta-

ble 4). Hypotheses were classified as relating to the properties of objects, properties

of behaviors of the program, the identification of an object, a simulated property of

an object, a property of the situation, a property of the code and others. Hypotheses

dealing with object properties involved the elaboration of one of the attributes of

some element in the situation that was treated as an object. Examples of an object

98

Table 3 Goal- and Plan-Related Segments.
Segment Category Number of Segments
Plan an approach 65 (47.1%)
Construct a goal representation 22 (15.9%)
Operating system-related 21 (15.2%)
Debugger-related 17 (12.3%)
Hex editor-related 9 (6.5%)
Finding a memory address 2 (1.4%)
Detecting a problem 1 (0.7%)
Remember a forgotten goal 1 (0.7%)

Total goal segments 138

property hypothesis are: “should be 74 or 75,” “not any check on this time like in the

other one,” “there’s a data section there,” and “this is what’s done to the name.”

Hypotheses dealing with properties of behavior treated the behavior of the code

as its own entity, and expressed properties in verbalizations such as “this is processing

the initial thing,” “EDX is going to get ECX,” “So that will be mod,” “it’s going to paint

the bitmap,” and “it’s going to tick once.” Hypotheses identifying objects involved

the participant recognizing the presence of something in the task environment as some

mentally-held concept. Hypotheses also talked directly about the situation, in which

verbalizations referenced the current state of elements in the task environment: “it’s

still open in memory,” “oh, I had the breakpoints set still,” and “must not have

saved.” Hypotheses related to the code’s structure involved statements about the

spatial layout of the code or recognized constructs in the code. Hypotheses dealing

with properties of the task environment involved expectations about how the task

environment worked or what affordances it had available. The other hypotheses in

the table only contained a few instances, but did not fit well into any other categories.

4.4.4 Information Seeking. Segments relating to information-seeking be-

haviors involved a number of different types of information. The two most prevalent

types of information sought were text and data values or top-down structure, which

makes sense as OllyDbg presents primarily text information to the user and the user

99

Table 4 Hypothesis-Related Segments.
Segment Category Number of Segments
Object property 50 (41.3%)
Property of behavior 18 (14.9%)
Identification of object 18 (14.9%)
Property of the situation 11 (9.1%)
Property of the code’s structure 9 (6.6%)
Property of the task environment 4 (3.3%)
Relevance of information 3 (2.5%)
Feasibility of an approach 2 (1.7%)
Truth of a statement 2 (1.7%)
Evaluation of progress in the task 2 (1.7%)
Relation between objects 2 (1.7%)

Table 5 Segments Expressing Information Seeking.
Segment Category Number of Segments.
Text or data value 14 (29.8%)
Top-down structure 14 (29.8%)
Mechanism of a program behavior 9 (19.1%)
Affordance in the task environment 5 (10.6%)
Behavior property 5 (10.6%)
Predicate on a value property 3 (6.4%)

must recognize program constructs from the text values. Segments describes as rep-

resenting mechanisms of a behavior involved how something in the program worked,

such as “it pushes the base pointer on the stack,” “to get out of the message is 401,”

and “does it hit this one at all.” Segments representing affordances in the task envi-

ronment were concerned with whether the task environment had a particular function

or information display available. Segments grouped as expressing predicates on be-

havior and value properties involved true or false statements about a behavior of the

program or about a recognized construct treated like an object.

4.4.5 Attentional Focus. A number of verbalizations were categorized as

representing the current focus of attention in the task (Table 6). Attention segments

referred to anchors that the participant attended to in performance of the task. Again,

the majority of these represent text or data values being read from the task environ-

100

Table 6 Types of Information Capturing Attentional Focus.
Segment Category Number of Segments
Text and data values 133 (48.9%)
Reasoning or inference 66 (24.3%)
Recognized structure 30 (11.0%)
Observed program events 16 (5.9%)
Evaluation of task progress 14 (5.1%)
Unexpected event (surprise) 7 (2.6%)
Expected information 6 (2.2%)

ment: “name and hardcoded serial,” “jump short jump 43,” “translate message,” and

“sorry please try again.” The second most numerous category represents mental in-

ferences or current explanations in the task: “it didn’t even stop on that breakpoint,”

“now it’s doing a nothing message,” and “that closes it.” The third most common

category represents identified structures which are recognized from the data: “that’s

a call,” “that’s the start of the program,” “that’s cancel.” The “observed program

events” category represents segments that indicated attention focusing on events that

the participant observes the program performing. The category “evaluation of task

progress” represented verbal segments where the participant discussed how the task

was proceeding: “alright, I found the serial first” and “where was I.”

4.4.6 Concepts and Emergent Conceptual Themes. Aside from goals and

plans, hypotheses, information, and the attentional focus, the conceptual components

from each verbalization were also analyzed and categorized. A category was added

to each of the rows of the spreadsheet containing the coded and elaborated verbal

segments. If a segment contained a reference to a concept, the concept was added

in an additional column labeled “CONCEPT.” The concept references consisted of

any noun or verb (aside from a particular number or data value) that were uttered

during the problem-solving task (for instance “doing,” “check,” “call,” “step in,” and

“push”).

After the concept references were elicited, a second method of gathering concept

information was undertaken to improve the concepts elicited. All of the transcribed

101

verbalizations except for “DEL” segments were put into a text file, in which numbers,

stop words (such as “is,” “to,” “for”) and ancillary phrases (“I think,” “maybe”) were

removed. The final list was then compared with the original list of concept references

to ensure that the original list did not miss essential concepts. The original list was

kept as the concept list from which other analysis would be made.

Once all of the concept references from the verbal data were recorded, each

concept was elaborated to determine the emergent categories of concepts that it be-

longed to (for instance “push is-a instruction,” “push is-a program action,” “call is-a

programming concept,” and “remember is-a cognitive action.”). After that, concept

references were grouped according their categories (for instance “location,” “debug-

ger action,” and “situation reference,”). Where only one or two concept references

existed in a category, they were added to the closest category in which they fit best.

Finally, the concept types were organized into a natural grouping based on concerns.

This grouping separated the concept types as to whether they represent:

• System concepts,

• Task environment concepts,

• Situational concepts,

• Cognitive concepts, or

• Background knowledge concepts.

System concepts (Table 7) relate to references to objects, data, or other elements

belonging to the underlying system being used and examined. This involves state-

ments about the program and its behavior, statement about the operating system’s

interaction with the program, statement about how things work in the program, and

so on.

Task environment concepts (Table 8) relate to those which are involved with the

user’s interaction with the task environment. These concepts involve static properties

102

Table 7 System Concept Types.
Concept Type Number
Program behaviors 55
Debugger actions 31
System functions 17
Program concepts 12
Properties of structures treated like “objects” in the code 11
Mechanisms in the program 3
Processor object 1

Table 8 Task Environment Concept Types.
Concept Type Number
Data properties 58
Object references 57
Individual instructions 38
Locations 35
User interaction concepts 25
Value references 21
Task environment actions 14
Text labels 8
Reverse engineering tool concepts 4
Affordances in the task environment 4

of the elements in the environment such as data values, structures in the code which

have been encountered, and locations of the program.

Situational concepts (Table 9) involve elements that are from both the task

environment and a person’s performance in the task at the same time. These concepts

include spatial and temporal properties of objects, the recognition of an object from

memory, reference to an action in the task environment, the status of an action, or

the judgment of whether something is relevant.

Cognitive concept types (Table 10) involve those in which the main objects are

mental objects. Cognitive concepts involve properties of the actor’s cognitive state,

strategy, evaluation of the current problem state, and goal references. These are self-

referential in nature and refer to the participant’s underlying processes of thinking.

Verbalized cognitive concepts are not nearly as numerous as the more visible concept

103

Table 9 Situational Concept Types.
Concept Type Number
Reference to individual action 111
Spatial property of an object 23
Temporal property of an object 23
Direct reference to an aspect of the situation 22
Recognition of an object 11
Status of an action 8
Reference to the task 5
Judgment of whether something is relevant 3

Table 10 Cognitive Concept Types.
Concept Type Number
Goal reference 14
Cognitive action 11
Problem state evaluation 9
Actor cognitive property 9
Mental simulation evaluation 6
Strategy 4
Problem solving action 2

groups, possibly because of the guidance to not attempt to explain thoughts when

making verbalizations. This group of concepts would be the most helpful in developing

models of procedural knowledge.

The final concept group, background knowledge concepts (Table 11) relates to

those which are cognitive in nature, but which refer to stored knowledge or “back-

ground knowledge” that is used in the task. This group consists of background knowl-

edge about debugging, programming constructs and concepts, mathematical and logic

operations, and aspects of troubleshooting through experimentation. Concepts in

these groups would be helpful in developing models of declarative knowledge in a

task. They would also be helpful in developing procedural knowledge models in that

many of these concepts involve patterns which could be expressed with a “condition,

action” rule.

104

Table 11 Background Knowledge Concept Types.
Concept Type Number
Debugging concept 110
Programming construct 69
Math concept 66
Comparison concept 27
Experimentation concept 22
Logic concept 12

4.4.7 Concept Summary. All of these concepts were grouped together to

determine the elements that are related to reverse engineers’ conceptual knowledge.

From this, five primary areas emerged which can be collapsed further into three:

• The task environment (the system and the tools to manipulate it),

• The task situation, and

• The agent (the person and the person’s knowledge).

The task environment, and the agent have properties which can be represented

in a particular situation context. The next section discusses the role that each of

these areas play in making sense of an executable program.

4.5 Discussion

The previous discussions presented information and affordances in a common

reverse engineering task environment, a walk-through of a simple reverse engineering

task, and an analysis of the procedural and conceptual aspects of knowledge from a

think-aloud study with a single participant. Each of these areas of discussion provide

a viewpoint from which to examine the reverse engineering process. These areas

relate to each other constantly throughout the performance of a reverse engineering

task. For an example of how the task environment (the tools and the program), the

task situation, and the agent’s knowledge (background knowledge and contents of

short-term memory) interact, the process of finding the location of the ShowWindow

instruction is considered.

105

4.5.1 Finding the ShowWindow Call. When the participant is looking for

the instruction that calls the ShowWindow function in the task environment, there

are a number of different ways a person can perform this subtask. The strategies a

person can use to find a location in memory depend on the amount of “background

knowledge” the person has. In any task, a person may have all, some, or none of

the knowledge required to solve the problem. In addition, the task environment may

provide affordances which make the task easy, but the person has to have knowledge

that the affordance exists, and that the affordance should be used in this particular

situation. Several features provided by the OllyDbg environment allow a person to

find a function call in the assembly code. Some of these features include a list of

imported functions and highlighted (red) text to the right of the disassembly pane

displaying system call information.

In the reverse engineering session from the Splish task, the call to the ShowWindow

function was mapped into the program’s memory at address 0x00401546. Someone

could find the function based on knowledge of:

1. The name of the system call,

2. The address of the ShowWindow function in memory, and

3. The address where ShowWindow is called by the program.

Combinations of these three pieces of knowledge would enable someone to find the

function by a number of different strategies.

4.5.1.1 Knowledge of the System Call Address. It is not likely that

someone without experience in the particular program would know the exact memory

address in the program where the call to ShowWindow is found. However, a person

might have access to a list of where the different operating system function calls are

mapped into the program’s address space. However, if someone does have explicit

knowledge of the address where the ShowWindow function from the USER32.DLL file

is mapped into memory, the person can use the search features of the debugger or

106

disassembler tool to search for a CALL instruction in the program which has this

address as an operand.

4.5.1.2 Knowledge of the System Call. If that address is not known,

but the person knows that the ShowWindow function is what causes the splash screen

to appear, the person can look for calls to this function. Since the person does not

know the address of ShowWindow in the DLL or the address where it is called to

create the splash screen, the reference to the call must be found in another way.

The participant could search for a reference to where system calls are mapped into

memory, or the person could use the reverse engineering tool to look for a list of calls

made by the program, find the appropriate call to the ShowWindow function in the

list, and then determine if the reference to that function is the reference which creates

the splash screen.

4.5.1.3 Knowledge-Free or Learning-Based Strategies. If the reverse

engineer does not know that ShowWindow is the function of interest, the person can

still find the correct function by exploiting knowledge that some function related

to “windowing” is involved to learn what the correct system function is and where

the call to that function is located. In this case, the person can look through the

system calls imported by the program, look for functions that seem like they might

involve windowing such as calls which contain the words “window,” “screen,” “dialog,”

“image”, “bitmap,” and so on. The participant then can investigate the references

to each, until the target function call is found. This strategy requires the person to

sift through much more data than a knowledge-enabled strategy would require, but

it enables the person to interactively acquire background knowledge which may be

helpful in other reverse engineering tasks.

A less-experienced reverse engineer might try to look for the ShowWindow func-

tion but may not have the knowledge that an operating system call is what produces

the splash screen window. In this case, it is still possible for the person to find the

function, but the approach to doing so is completely learning-based. The novice re-

107

verse engineer with no knowledge of system calls can use the debugger to step into each

instruction until the instruction is executed which causes the splash screen to appear.

The participant can then infer that the instruction that was executed when the splash

screen appeared caused the program to execute the splash screen. If the instruction

that executed is a CALL instruction, the person can infer that one of the instructions

in the function that was called is responsible for showing the splash screen.

Even this strategy requires background knowledge about how programs are

mapped into memory. When the program makes a call to code from a dynamic

link library (DLL) file that implements part of the operating system’s API, the pro-

gram steps through instructions that are not technically part of the program. It

requires background knowledge to detect if the debugger is stepping through pro-

gram code or through code from an operating system DLL. To detect whether the

debugger has stepped into DLL code, a person has to recognize information cues from

the environment, which in this case are provided by addresses in the disassembly

pane of the debugger’s window which indicate a addresses starting with 0x7XXXXXXX

instead of 0x4XXXXXXX. There is also a text label in the debugger’s register pane

which can provide the reverse engineer an indication the debugger is executing code

in USER32.DLL, NT.DLL, or another DLL.

The brute force process of stepping through each instruction can be very tedious

and can take a long time. Another strategy to find the function call is to step over

instructions until the splash screen appears and then recursively narrow down into the

functions until the correct CALL instruction is found. This strategy involves stepping

through the instructions in the program until the program displays the behavior of

interest. When the program behavior of interest is displayed, the person can set a

break point at one of the instructions directly before the instruction that generated

the behavior. When the program is run again, it will stop before the input is read,

which allows the user to step into the function where the user’s input is taken.

108

In this way, a person can use knowledge about troubleshooting to acquire knowl-

edge about the particular system call of interest. When the person finally arrives at

the system call, he or she will be able to step over that instruction and see the splash

screen appear as the system call is executed. This enables the person to mentally

connect the event of the splash screen and the system call code as its most plausible

cause.

4.6 Conclusions

Reverse engineering tasks require a great deal of domain knowledge, but they

also involve the ability to leverage that knowledge to find elements of interest, to

make predictions about the program, to abstract instruction segments of the program,

and to develop higher-level explanations about the program’s properties. All of these

activities rely on the ability to make sense of elements in the environment to construct

a coherent model of the situation.

This chapter presented information and affordances involved with a reverse en-

gineering task, a walk-through of a reverse engineering task, and analysis of a think-

aloud protocol to examine procedural and conceptual knowledge involved in a reverse

engineering situation. After that, an example of finding the call to an operating sys-

tem function was described in terms of the knowledge required and the affordances

provided to the person performing the task.

The next chapter presents a semi-structured interview study which elicits ele-

ments of procedural and conceptual knowledge in reverse engineering from subject

matter experts. In Chapter 6, an observational study is presented to develop a theory

of the sensemaking process in understanding executable programs. Finally in Chapter

7, the overall findings of the research are discussed and directions for future research

work are presented

109

5. Semi-Structured Interviews with Subject Matter Experts

5.1 Introduction

The previous chapter discussed a case study of a reverse engineering task and

outlined a conceptual framework for understanding situational aspects of how reverse

engineers make sense of executable programs. This chapter describes a study un-

dertaken to connect the low-level details involved with cognitive aspects of reverse

engineering with concepts and processes that reverse engineers refer to when talking

about reverse engineering work. To achieve this goal and to gain a broader picture

of cognitive aspects of making sense of executable programs in real-world reverse

engineering work, subject matter expert (SME) reverse engineers were interviewed,

and the data from the interviews was captured and analyzed. From the analysis of

interview data the procedural aspects (goals and decisions) and conceptual aspects

(information cues, concepts, and knowledge) of reverse engineering work were elicited

and represented.

First, the analysis of the interview data is presented. After that, the different

domains in reverse engineering are described, followed by an organization of goals

used in reverse engineering tasks. After that, conceptual aspects of reverse engineer-

ing are presented including the different ways information cues are used, specialized

knowledge requirements, and the role of tacit knowledge in solving reverse engineering

problems.

5.2 Segmentation and Coding of Interview Data

After the interviews were transcribed, they were analyzed for conceptual con-

tent, organization of concepts, and to answer the research questions of the dissertation.

The researcher read through the printed transcriptions several times and took

notes to record how each of the SMEs responded to the interview questions, to notice

patterns and themes, and to relate themes across the different interviews and ques-

tions. The themes from the post-interview notes were compared with the notes taken

110

during the interviews to ensure no themes or important concepts were missed from

impressions captured during the interview.

The text documents containing the interview transcripts were segmented and

coded in two separate ways for analysis. First, the text was segmented by sentences

and analyzed to elicit concepts from the interviews. Second, a copy of the interview

data were segmented by ideas, which spanned from a portion of one sentence to several

sentences in length, and coded according to which question group they addressed.

5.2.1 Sentence-Level Concept Analysis. To analyze the document at the

sentence level, the transcriptions were divided up into individual sentence-sized seg-

ments. The rule that guided segmentation was: “segments should be sentences, and

are described by punctuation in the text file (like periods or question marks) that

normally indicate the end of a sentence.” To segment discourse that was difficult to

segment using that rule, the rule “a segment should represent a single idea” was used

as a secondary way to demarcate segments from the text. Afterward, all of the seg-

ments were reviewed by the researcher to ensure they represented legitimate sentences

and phrases.

Once the transcriptions were segmented, each of the segments was coded by

the researcher to annotate conceptual content. Each segment within each of the

documents was annotated with one or more tags to represent the concepts discussed

within that segment. For instance, a single line of text would read something like:

“PROTECTIONS, BREAK, APPROACH, INTUITION, (the sentence text)” if the

concepts “protection,” “break,” “approach,” and “intuition” were talked about in the

sentence. During coding, the segments were kept in their original ordering to ensure

referring expressions within the segments maintained their original contexts in the

SME’s responses to interview questions.

Once all of the sentences were coded, the researcher wrote an automated script to

extract the concepts from the text documents, to count their frequencies of occurrence,

and to determine the co-occurrences in which one concept appeared with another

111

concept throughout all of the text documents. The script is included as Attachment

F.

5.2.2 Idea-Level Concept Analysis. After the sentence-based segmentation,

copies of the original, un-coded documents were reviewed again and the text was

segmented based on the following rule alone: “segments should represent a single

idea.” This rule divided the segments much differently, with smaller ideas taking

only a part of a sentence and larger or more complex ideas taking sometimes several

sentences to express. In cases where the SME participant used storytelling to elaborate

on an idea, the segments relating to the annotation of the idea were longer.

Once the text was broken up into idea-sized segments, the segments were coded

based on their relation to one of the question groups from the questionnaire. The

following codes represented the different groups of questions in the interview ques-

tionnaire:

• APPROACH - Statements related to the approach taken to solve a reverse

engineering task.

• CUES - Statements related to using information cues in the course of a task.

• DECISIONS - Statements related to decisions in a task and how they are made.

• DOMAIN - Statements referring to the organization of the reverse engineering

problem domain.

• GOALS - Statements relating to the underlying goals used in performing a task.

• KNOWLEDGE - Statements related to concepts a reverse engineer needs to

know.

• SKILLS - Statements related to abilities or procedures a reverse engineer needs

to have.

• TACIT - Statements referring to knowledge that has become proceduralized or

automatized with experience.

112

• TOOLS - Statements relating to reverse engineering tools.

During coding, the answers were abstracted by reviewing each of the original

documents several times and annotating a more abstract and concise description of

the SME’s response. Each annotation had a marking to identify the SME and a code

which described the category to which the response applied. For instance, a long sen-

tence describing the goal of knowing the purpose for performing reverse engineering

would be coded: “SME1, GOAL, Find the purpose.” Another sentence describing a

necessary piece of knowledge for a reverse engineer might be coded: “SME4, KNOWL-

EDGE, Manual function name resolution.” The annotations were to be self-contained

so that they would not rely on a reading of the text or referring expressions within the

text, but instead represent abstracted and captured answers to the research questions.

Once the annotations were created and coded, they were combined into a sin-

gle file for analysis. This file provides a concise list of the interview questions and

the SMEs’ answers to the questions. Each of the SMEs were later asked to verify the

organization of the goals, knowledge requirements, and tool needs and to provide com-

ments on the structure of the overall responses. The abstracted interview responses

are found in Appendix G. The representation of a goal-directed task analysis [68] of

reverse engineering as constructed from the interviews is found in Appendix H.

5.3 Recommendations for Observational Study

After the interviews were conducted, the SMEs were asked for their advice on

designing an observational study that would capture the essential elements of building

a mental model of an executable program. Common elements of their input were

incorporated into the design of the observational study discussed in Chapter 6.

5.4 Results and Discussion

The rest of this chapter describes overall results of the study from the SMEs’

answers to the interview questions. First, in Section 5.5, the domain of reverse en-

113

gineering is described in the ways used by the SMEs to decompose the concerns of

reverse engineering. Next, Section 5.6 provides an organization of the procedural

knowledge aspects of performing reverse engineering tasks including the goals and

approaches the SMEs described using when reverse engineering programs.

Following that, the SMEs’ interpretation of conceptual knowledge aspects of

reverse engineering are presented. This discussion includes the information reverse

engineers use from the task environment and the areas of knowledge that are required

to perform reverse engineering tasks (Section 5.7).

5.5 Reverse Engineering Domains

There are several different ways that the SMEs differentiated tasks in reverse

engineering. Reverse engineers described reverse engineering tasks as involving the

following arenas:

• Software,

• Hardware, and

• Firmware.

Within software reverse engineering, the participants discussed several different

arenas of software where reverse engineering is performed:

• Web and network applications,

• Desktop applications,

• Documents containing software,

• Libraries and DLLs,

• Embedded systems, and

• System-level software.

114

The SMEs also differentiated reverse engineering according to the purposes for

which reverse engineering is being conducted. This line of differentiation was the most

prominent in the interviews, and breaks down into four major categories:

• Vulnerability discovery,

• Malicious software analysis (including looking for rootkits and backdoors),

• Software protection analysis, and

• Reverse engineering unprotected software.

Across all of the interviews, the salient feature that separated software reverse

engineering from another activity was that software reverse engineering involves read-

ing programs from assembly code rather than source code. For instance, the SMEs

explicitly excluded network penetration testing (a related cyber security domain) and

looking for vulnerabilities in source code from consideration as reverse engineering,

because while they involved similar types of problem-solving, they do not involve

reading assembly language code.

The interviews elicited knowledge that is specific to vulnerability discovery, ma-

licious software analysis, and software protection analysis. The goals and knowledge

that are specific to each of those domains are important to understanding how those

tasks are performed, but they are not central to the goal of the dissertation, which

is understanding the conceptual and procedural aspects of how people make sense of

executable programs. Instead, this section focuses on the procedural and conceptual

aspects that are shared between the four domains.

5.6 Procedural Aspects of Understanding Programs

In the interviews, the SMEs discussed their approaches to problem-solving in

reverse engineering, their goals, and how their goals affected their understanding of the

programs they reverse engineered. All of the reverse engineers described a number of

particular problems they remembered from experiences they had reverse engineering

115

Table 12 Goals in Making Sense of Programs.
Goal
Understand the purpose of analysis
Finish the analysis quickly
Discover general properties of the program
Understand how the program uses the system interface
Understand, abstract, and label instruction-level information
Understand, abstract, and label the program’s functions
Understand how the program uses data
Construct a complete “picture” of the program

programs. Many of the descriptions involved difficult challenges in breaking software

protections, deobfuscating program code, or getting access to instructions of encrypted

or packed programs to enable them to begin to understand the program.

The SMEs also discussed the approaches used to understand the program and

to make sense of “what the program does” in the context of their goals. Some of

the described activities were at a higher level of abstraction, such as “discover the

properties of the program” and “understand the purpose of analysis.” Others applied

to all of the categories of software reverse engineering: “understand system calls”

and “understand code inside the function.” The goals that applied to understanding

unprotected code also applied to all other categories, so this domain is used to under-

stand how reverse engineers make sense of executable programs. The organization of

the goals elicited from the interviews is shown in Table 12.

5.6.1 Understand the Purpose of Analysis. Since the properties that are

important depend upon the purpose for which analysis is conducted, the SMEs ex-

pressed that determining that purpose is itself an important goal. The need for an

explicit purpose is consistent with prior findings in which programmers maintaining

source code in controlled studies had difficulty understanding programs when they

were not given goals to constrain their analysis activities [146, 202] . One of the

SMEs commented:

116

“You need to find the purpose for reverse engineering the code. What is
the specific question that the reverse engineering work will be answering?
Start with a specific question. If you don’t start with a specific ques-
tion your goals will be aimless. The question you have also drives other
questions you have to answer as you go through the process.”

For example, if the output of the reverse engineering effort is a report describing

the behaviors of a program, the goals of analysis are constrained to those which will

help a reverse engineer gain information that relates to that goal. When goals are

constrained in this way, the reverse engineer can focus efforts on those activities which

will help provide information about the program’s behaviors rather than other less

relevant information.

The SMEs indicated that they commonly ignore large parts of programs that are

not directly related to their analysis objectives. In order to save time in the analysis

task, the entire program cannot be investigated and analyzed, so they focus on those

parts of the program which will provide them the most benefit. In this respect, the

desired output of the task drives the goals of analysis, which in turn drives the overall

direction in which analysis proceeds.

5.6.2 Finish the Analysis Quickly. Though it seems like more of a constraint

than a goal, all of the SMEs explicitly described the constant need to complete the

analysis tasks as quickly as possible. Reverse engineering a program is manpower

intensive, so it can be an expensive way for an organization to find out information

about a program. The SMEs expressed that since reverse engineering is so expensive,

they have a strong motivation to stay focused on achieving the overall goal of finishing

the reverse engineering task and to avoid distractions. In fact, finishing the task

quickly was considered by the SMEs to be more important than understanding the

program in extensive detail. They described making decisions about the value trade-

off where more time spent in analysis may not provide better value to the sponsor

that is paying for them to reverse engineer the target program.

117

The goal of finishing the task quickly leads to the selection of strategies which

can accomplish the task quickly rather than those which are slower but provide richer

information or better understanding of the program. Finishing quickly also means

that in practice reverse engineers constantly try to find faster ways of performing

effective analysis, breaking protections, automating repetitive tasks, and generating

value for their customers.

5.6.3 Discover General Properties of the Program. The SMEs mentioned the

main goal for each type of reverse engineering task was to discover as much as possible

about the program. For a small program, this means identifying all of the program’s

behaviors for all possible inputs. However, for large programs, the state space of the

programs grows exponentially with every decision procedure in the program’s code.

This mean that the goal is to understand the most important aspects of the program’s

behavior given the most relevant inputs to the program.

One of the ways to quickly gather information about a program is by looking

at its general observable properties, such as its file size, the size of the sections of the

program that are mapped into memory, the names of the sections, whether or not the

file’s header is well-formed, and any text strings in the program. This information

provides “quick and dirty” approaches to quickly narrow down what needs to be

investigated in the program.

5.6.4 Understand How the Program Uses the System Interface. Other prop-

erties of the program are more abstract, such as how a program uses the system’s

interface. In order for programs to perform any tasks on a system they typically have

to make programmatic requests through the operating system’s system call interface.

Functionality extended through the system call interface includes I/O functionality

like video buffer write operations or file system read and write operations.

The SMEs described looking at the library calls that a program imports and the

system functions that it uses to form a mental model about what the program does,

118

sometimes before ever stepping through the code or watching it execute. System calls

can provide information that allow a person to explore the behaviors of a program,

or they can be used to enable the person to generate a hypothetical explanation of

what behaviors the program might perform, which the reverse engineer can then look

for in the program’s code.

The SMEs described getting information about how the program uses the system

interface by examining the import tables, scrolling through the program looking for

system calls that the debugger or disassembler identifies, and by hooking the system

APIs and letting the program run in order to discover sequences of system calls used

by the program.

5.6.5 Understand, Abstract, and Label Instruction-Level Information. The

SMEs indicated that another important process in understanding programs is exam-

ining the instructions inside functions to be able to assign meaning to patterns of

instruction sequences. Groups of assembly language instructions perform the algo-

rithmic operations and data manipulation processes in a program. Sometimes these

local code fragments perform computations to construct a memory address to which

the program will transfer control. In other times they reconstruct variables that are

used later in the program. Still in other cases local code may be sequences of instruc-

tions which represent algorithms that the reverse engineer is trying to uncover and

understand.

The SMEs described understanding sequences of assembly instructions by trac-

ing data values as they moved through a program’s execution, or through translating

assembly instructions into a higher-level programming language syntax or into pseu-

docode, either mentally, on paper, or in a text editor. Analyzing instruction sequences

can help reverse engineers better understand how the code inside a function works in

order to help them better understand the function. Other times, different sequences

of instructions within a single function have their own roles and the reverse engineer

119

might consider them separately and label or comment on them independent of the

function they are considered to be a part of.

Once the behavior of a sequence of instructions is specified and understood,

the details of that sequence can be abstracted away and replaced with a meaningful

symbol or label to represent the behavior of the instruction sequence in the person’s

memory. Symbols or labels for sequences of instructions make it so that sequence

does not have to be processed each time it is encountered. Instead, a reverse engineer

can group a sequence of 100 or so instructions with the label “decryption routine,”

and then that label represents the sequence almost as if it were an object with its

own properties and behaviors.

5.6.6 Understand, Abstract, and Label the Program’s Functions. Another

theme from the interviews was that reverse engineers analyze a program’s functions

and subroutines to determine the behaviors of the program. Many programs are

written using functions and subroutines and much of the functional structure of a

program is preserved when programs are compiled from source code into machine

code. For instance, when a program module performs a CALL instruction to another

area of the program, the program executes until it comes to a RETN instruction and

return control flow to the originating program module, typically with a return value

stored in the EAX register (depending on the calling convention).

Reverse engineers can form mental models of how program control flow works

by dividing the instructions of a program into meaningful basic blocks by hand or

using tools that display graphical representations of the code’s control flow. To di-

vide a program into meaningful basic blocks, a program can be grouped into sets of

linear sequences of instructions which are demarcated by control flow instructions like

JMP, CALL or RETN instructions. Dividing sets of assembly language instructions into

subroutines is a natural process for reverse engineering programs since it abstracts

away many of the details of assembly language. Many analysis tools such as IDA Pro

120

Figure 14 Basic Blocks in IDA Pro.

[88] perform this analysis automatically to present graph-based views of code to the

person using the tool.

When a reverse engineer understands what a function does, it becomes mean-

ingful to look at patterns of function calls in the program. Patterns in the ordering

of function calls can make analysis tasks move from concerns about syntax issues

to concerns over functional and behavioral-level aspects of programs. Additionally,

reverse engineers can gain information about how functions interact with each other,

such as in how functions pass arguments and return values back and forth.

In understanding the relationships in how functions call each other in a pro-

gram, a reverse engineer can get a better understanding of the roles that the different

modules of the program perform. SMEs indicated that it often requires using top-

down knowledge about the problem domain (such as malicious software analysis or

vulnerability discovery) in order to make sense of how functions work in the context

of the domain.

5.6.7 Understand How the Program Uses Data. SMEs indicated that un-

derstanding how instructions interact with program data is also important. The

relationships between instructions and the data contained in memory can help a re-

verse engineer understand the functionality a code segment provides and can provide

121

insight about data structures that might be used in the program. For instance, if sev-

eral instructions read and write memory to a small group of values in the program’s

heap, it could indicate that the functions belong to what in the source code was a

dynamically allocated object instance of a C++ class.

A reverse engineer can understand local code by following the flow of data,

registers, and memory values forward from a starting point or by tracing the flow

back from an ending point. Tracing data forward and backward from points in the

program’s instruction sequence is a filtering process which helps isolate important

instructions from less important ones.

Tracing the flow forward from a particular point in the code might be useful

in order to discover how a value in memory changes or to determine which of the

subsequent local instructions are relevant to that value. This can serve as a way to

filter the instructions to only those which are relevant. Tracing the flow backwards

from an end point allows seeing where a value came from and how it was constructed.

Tracing backward allows determining which instructions are important to a register

or memory address having the value that it does.

Reverse engineers can also use information about how a program uses data to

determine how the program interacts with the outside world. Programs take input

from the world in the form of data, which is processed by functions and instruction

sequences in the program. This information can be used to determine the control

flow of a program, for instance if malicious software “senses” whether it is being run

in a virtual machine, or if it is a bot which looks for a certain type of input or set

of commands before transferring control to parts of the program involved in carrying

out its behaviors.

Also, if a reverse engineer is looking for exploitable vulnerabilities, understand-

ing the location and safety of how the program handles data that comes from outside

the program can help isolate bugs that can be manipulated by an adversary. Know-

ing that data is from outside of the program involves being able to trace the data

122

from where it was generated to where it is used. Understanding whether or not the

program handles the data safely involves understanding how the program uses data

as well as how the program “should have” used the data.

5.6.8 Construct a Complete “Picture” of the Program. The SMEs discussed

“building a complete picture of the program.” This “picture” of the program is the

“situation model” discussed in Chapter 2 and its contents and means of construction

are the primary interest of the dissertation.

The SMEs discussed the complete picture of the program as understanding

“what the program does,” “how the program works,” “what the parts of the pro-

gram are,” and “where” the different parts of the program are located in memory.

From these descriptions and the other procedural aspects of understanging programs

outlined above, the main properties of a situation model or “complete picture” of a

program involve:

• Program components (functions, subroutines, or sequences of instructions),

• Program behaviors (things the program does), and

• Program functionality (the mechanism of how the parts work).

These categories are consistent with the organization of concept concerns from the

case study (Chapter 4).

The SMEs described the activity of switching back and forth between top-

down activities (like understanding functions) and bottom-up activities (like tracing

data through the program) until they come to the complete picture of the program.

The process of switching between top-down and bottom-up activities has also been

documented in similar studies with programmers working with source code [146].

The complete picture of a program might also involve questions of intent, such

as “why the program’s developer would have written the program to perform the

behaviors it exhibits in the way it exhibits them.” The interpretation of program

intent requires a person to be knowledgeable about abstract behaviors programs can

123

exhibit, goals and incentives the developer might have, and scenarios where the de-

veloper’s intentions could be achieved through writing the program. Understanding

how people interpret the intent of programs (like malicious programs) from assembly

language representations is an additional area for future research.

This chapter has so far discussed the different work domains involved in software

reverse engineering and the procedural aspects of how reverse engineers make sense

of executable programs from subject matter expert interviews. The next section

discusses the conceptual elements involved in understanding programs.

5.7 Conceptual Aspects of Reverse Engineering

Other aspects of understanding executable programs include the information

used in the course of reverse engineering, and background knowledge which helps

enable the top-down recognition of patterns in the code. The SMEs related the

same theme several times about their approach, decisions, goals, and activities: “it

depends.” Their decisions were informed by both the information from their reverse

engineering tools, and background knowledge from their training, education, and

experience. First, this section describes how reverse engineers use information cues in

the process of reverse engineering. After that, it describes the knowledge areas which

the SMEs indicated are important to being able to reverse engineer programs.

5.7.1 Information Cues. Reverse engineering tools provide information cues

which can shape the course of a reverse engineering task. The SMEs reported several

examples of where their decisions in the task depended on factors from information

presented by their tools. For instance, in vulnerability discovery and unprotected pro-

gram analysis tasks where applications are usually not protected, the reverse engineer

is able to assume the program has been compiled with normal program compilation

techniques. Since code structures will likely be normal and there will be no protec-

tions to deal with, the person does not have to look for abnormal code structures

or latent functionality in the program. Additionally, the information provided to a

124

reverse engineer by a disassembler, debugger or other instrumentation tools can be

considered reliable when working on those types of applications.

With malware and software protection analysis tasks, reverse engineers cannot

rely on any of these assumptions. The SMEs described that these operating assump-

tions are violated as a rule rather than as an exception. In malicious or protected

code, the code structure will likely be abnormal. The program could contain packed

or encrypted code or have code that is heavily obfuscated. The program might also

rely on dynamically loaded libraries or function bindings which change throughout

the course of the program’s execution.

The SMEs described information that they came across passively, that they ac-

tively sought out, and that they had to continuously monitoring for. They also related

being careful to verify the trustworthiness of the information they are presented in

the context of the overall program.

5.7.1.1 Passively Discovered Information. Some of the information

cues described by the SMEs were passive information cues. With these types of cues,

the SMEs saw something that “looked weird” in the tools, or they came across an

error message or some other information which led the task in a different direction.

These cues can indicate areas that need to be looked into further and can verify or

disconfirm a previously-held assumption the reverse engineer might have had.

An example given of a passively-discovered information cue is when a reverse

engineer debugs a program and it terminates right after it is started in the debugger.

In this situation, the information perceived about the program stopping suggests that

the current operating assumptions (that the program did not have anti-debugging

code) have changed. Once that shift takes place, the reverse engineer has to change

his or her approach to defeat the anti-debugging code before being able to understand

the program.

125

5.7.1.2 Actively Sought Information. In some cases, like the termi-

nating program mentioned above, the task environment readily presents the essential

information cue to the reverse engineer. In other cases, the reverse engineer must ac-

tively seek out information. The SMEs indicated that the information that is sought

is based on a background hypothesis or set of assumptions, whether the person realizes

it or not.

One SME mentioned looking for indicators in a program, such as calls to library

functions that were known to be unsafe, which could help indicate that a program

might have vulnerabilities which can be exploited. If the code only uses safe string

handling functions and proper code handling practices it might generally be safer code

and less vulnerable to attack. However, if the program displays evidence of unsafe

code practices, uses unsafe string handling functions, and does not check arguments

in a subroutine, it indicates that inputs may also not be handled correctly and that

exploitable vulnerabilities might be easier to find.

In this case, the task environment does not readily present this information to

the person performing the task. Instead, the person has an assumption that leads him

or her to look for the information, determine when it has been found, and interpret

what it means in the context of the person’s mental model of the program.

The SMEs indicated that expert reverse engineers develop their own instrumen-

tation tools to determine information that is not readily accessible with their current

tool setup. This kind of information might include information about whether mal-

ware writes instructions into memory or tries to communicate via a network port. A

less experienced reverse engineer might not know to look for these cues, might not

know how that information can be gathered, or might not have the background in

programming and systems to be able to create instrumentation tools to gather the

information. The SMEs referred to this as “knowing the right things to look for” and

described it as one of the things that reverse engineers gain with experience over time.

126

5.7.1.3 Continuously Monitored Information. Finding the information

may not be enough when a program’s information can change between observations.

In these cases, actively monitoring elements in the task environment is required. For

example, an experienced reverse engineer can determine whether a malware program

writes files to the file system by actively monitoring for whether file system changes

are made, but if this is not monitored while the program executes, it will not be seen.

Other types of monitoring activities described include monitoring system processes

to see if new processes are created or monitoring to see if a program tries to execute

code that is marked non-executable. In cases in which this type of monitoring cannot

be performed visually, the SMEs described that they write tools to automate their

monitoring and to notify them when the event of interest takes place.

5.7.1.4 Verifying the Trustworthiness of Information. Another com-

plication with information cues is that reverse engineers have to be able to trust that

the information provided by the tools is correct. One of the SMEs indicated that

novice reverse engineers will tend to trust their tools more than experts will. All of

the SMEs described setting up small experiments to test their assumptions so they

can make more confident statements about what the program does.

Sometimes the information is inaccurate because tools do not portray accu-

rate information or cannot understand the program being disassembled. The SMEs

referred to not using the decompilers that convert assembly instructions back into

source code, or at least verifying the information from the decompiler before trusting

it. Decompilers have to make a number of assumptions which might not be the correct

for that reverse engineering situation.

Other times information is inaccurate because malicious programs may be in-

volved which change the information that is being reported or present a “garden path”

for the reverse engineer. This is a problem because it can take the reverse engineer

down a path of analysis which will not reveal the true behaviors of the program. In

these cases, the reverse engineer thinks the analysis is going well when it is not. A

127

SME described it as: “being taken down a rabbit hole. . . You can potentially waste a

lot of precious time with nothing to gain.”

5.7.1.5 Goal-Related Cues. Other information cues provide indications

about the problem-solving state rather than the state of the program. These cues

indicate that the goal has been achieved or is close to being achieved. The particular

goal-related information cues depend on the purpose for which reverse engineering is

to be performed and the output expected from the reverse engineering task.

If the purpose of reverse engineering is to understand the overall functionality

of a program, a cue one of the SMEs described is that most of the functions in a

program have been discovered and understood. If the purpose is to determine whether

a program exhibits a specific type of behavior, a SME described using the cue that all

of the system calls known to relate to that behavior have already been looked at. In

that case, the reverse engineer only has to rule out the possibility that the program

dynamically loads the functionality to perform that behavior later.

During vulnerability discovery, it is possible that the entire reverse engineering

effort could be wasted if, in fact, the code does not have any vulnerabilities. When

this happens, the time spent looking for vulnerabilities in one program could be better

served looking for a different vulnerability in another program. In these cases, the

SMEs referred to using their rate of progress and their progress given their effort as

two indicators. A reverse engineer might determine analysis is going nowhere if there

has not been progress for a long amount of time, or if a lot of effort has been expended

where usually it only takes a small amount of effort.

This section has described how information cues are used in reverse engineering

executable programs. The next section describes the conceptual aspects of knowledge

that help reverse engineers connect the information cues in the environment with their

performance in the task.

128

Table 13 General Knowledge Areas in Reverse Engineering.
Knowledge Area
Assembly language
Computer programming
Debugging and troubleshooting
Processor structure and function
Program execution process
Operating system calls
File header formats
Operating system internals
Anti-reverse engineering techniques
Firmware and hardware
Network communication protocols
Compilers and interpretation

5.7.2 Specialized Knowledge. Reverse engineers make sense of programs

by connecting the information they encounter from the task environment with their

background knowledge. One of the things many of the SMEs pressed upon was the

vast amount of knowledge that is required to be good at reverse engineering programs.

The SMEs reported that reverse engineers require knowledge from most of the areas

involved with computer science. The primary knowledge areas identified from analysis

of the interview responses are presented in Table 13.

Apart from the general knowledge involved in reverse engineering, the SMEs also

indicated specialized knowledge which they believe separates experts from novices.

These areas of domain-specific expertise are presented in Table 14 and the findings

from the SME interviews related to these knowledge areas are discussed in the rest of

this section.

5.7.2.1 Translating from Assembly Into Higher-Level Languages. The

SMEs identified the knowledge of and facility with assembly language as one of the

most important components of a reverse engineer’s practical knowledge. Sequences of

assembly language instructions comprise the major data representation that reverse

engineers deal with. One of the most helpful capabilities is that expertise in assembly

129

language allows reverse engineers the ability to see common patterns in program code

and quickly translate these patterns to higher-level representations.

The SMEs reported having a fluidity with this process which they gained through

experience reverse engineering code. Experts have a built-up mental repository of pat-

terns or “plans” which them connect a sequence of assembly language instructions in

the task environment to a representative representation in a higher-level programming

language.

Understanding how to translate from assembly language to a higher-level rep-

resentation also requires understanding the target computer processing unit (CPU)

architecture in depth. One must know the instruction set, understand the common

uses of different instructions and opcodes, be able to notice when a pattern represents

a compiler optimization or something anomalous in the code.

Knowledge about computer architecture theory and basics can be gained through

advanced undergraduate and graduate computer science courses. Sometimes the

courses include hands-on coursework (often with simpler fixed-length reduced instruc-

tion set architectures). More detailed knowledge is specific to a particular processor,

so many reverse engineers learn this by studying reference manuals for the proces-

sor of interest such as the Intel Architecture Manuals [97] while reverse engineering

programs. The SMEs mentioned that another way to gain this pattern recognition

capability was to write small programs in a higher-level language, compile them, dis-

Table 14 Specialized Knowledge Areas.
Knowledge Area
Translating from assembly language into higher-level languages
System API functionality
System internals knowledge (processes, I/O, synchronization, etc.)
How compilers generate machine code
Classes of vulnerabilities and exploits
Knowledge of and recognition of malware
Knowledge of software protection techniques and how they work

130

assemble the compiled code, and read through the assembly-level translations while

comparing it to what was written.

5.7.2.2 System API Functionality. Knowledge of a system’s appli-

cation programming interface (API) is essential to understanding the behaviors of a

program. Nearly all programs use the operating system’s API at some level to access

the input and output (I/O) functionality of the system. It is the system’s API that al-

lows graphics and message box windows to be displayed to the screen, file operations,

security functions, process creation, and more.

An operating system’s API is specific to that operating system architecture, and

college courses in computer science or computer engineering do not usually prepare a

person with this knowledge. This type of knowledge is also gained through experience,

or by reading specialized texts in software development and performing the exercises

found in those texts, such as Petzold [149]. The SMEs reported gaining knowledge

of the operating system APIs through reverse engineering programs that use system

calls, or reverse engineering the operating system functions themselves to verify what

operations they perform.

5.7.2.3 System Knowledge. System knowledge consists of knowledge

about the operating system internals and software architecture of a system. It includes

an understanding of how the entire ecosystem surrounding the target program works.

This knowledge encompasses an understanding of the internal structures and

functions of the operating system, and how the heap, stack and individual stack

frames are laid out. It also includes knowledge of the location of different kernel data

structures in memory and how to access their contents. System knowledge includes

an understanding of how the processor fetches and executes instructions, how the

processor implements its functionality and how the program loader works to read the

program into memory.

131

The SMEs reported that expert reverse engineers should understand how func-

tion callbacks, asynchronous events, and thread execution work “under the hood”

rather than just the name of the system function that implements them. SMEs also

outlined that skilled reverse engineers would have a detailed knowledge about how

processes and threads work in the operating system, as well as the user and kernel

levels in the operating system and how the protection rings provided by the processor

are implemented.

The theoretical component of this knowledge can be acquired through upper-

level undergraduate or graduate computer science courses in operating systems and

computer architecture. However, more detailed knowledge is specific to a processor or

operating system and is gained through experience working in or reverse engineering

the operating system’s kernel. The SMEs also mentioned studying books like Russi-

novich and Solomon [167] to understand the design and architecture of the operating

system the programs run in.

5.7.2.4 How Compilers Generate Machine Code. Another important

aspects of domain-specific knowledge is how programs are compiled into assembly

instructions. The assembly instructions investigated by reverse engineers have been

through the process of compilation from source code into machine code, and then

for analysis have been converted back into assembly instructions by a disassembler.

The SMEs said that knowledge about how compilers generate machine instructions

can help someone recognize the difference between a compiler optimization and an

anomalous or malicious code segment.

Additionally, compilers manipulate, parse, and arrange instructions differently,

which makes the layout of assembly instructions from one program to another differ-

ent. It can also change other assumptions like the function calling convention that

is applicable to the program. The SMEs expressed learning the theoretical compo-

nent of compiler knowledge from compiler textbooks like Aho et al. [1] and from

college computer science or computer engineering courses. They described gaining

132

more applied knowledge of how each compiler works from experience compiling their

own programs with one or more compilers and reading the assembly code that each

compiler generates.

5.7.2.5 Classes of Vulnerabilities and Exploits. Vulnerability knowl-

edge includes understanding the different types vulnerabilities that can exist in each

piece of the computing infrastructure. This knowledge consists of knowledge about

vulnerability classes, knowledge about how to develop exploits, and knowledge of the

ways that different exploits can be leveraged on a system.

Understanding vulnerability classes can mean understanding the different phases

in which vulnerabilities are generated in system development, what types of systems

they affect, what types of errors lead to vulnerabilities, what attack scenarios use

them, how they are exploited, and several other facets [122]. In particular, the SMEs

identified that reverse engineers must understand in great detail how memory cor-

ruption vulnerabilities (like buffer overflows, integer overflows and underflows, null

pointer dereferences, heap corruption, format string vulnerabilities, and so on) occur

and how to prevent them.

The SMEs mentioned that expert reverse engineers working in vulnerability

discovery or malicious software analysis should how to craft an exploit which takes

advantage of a vulnerability. This can be as simple as the ability to generate a ma-

licious input from a user prompt or as complicated as crafting a document which

allows an attacker to gain elevated remote access when a user opens it in a document

reader. The knowledge of how to exploit a system is important for both developing

proof-of-concept exploits, and for knowing what constitutes an exploitable vulnera-

bility rather than just a bug. The SMEs mentioned that it often takes developing

a proof-of-concept exploit before the sponsor will accept that the system is, in fact,

vulnerable to attack.

Knowledge of vulnerability classes also includes understanding the ways that

attacks are carried out on different types of systems. This involves understanding how

133

attackers identify systems to attack, how they use vulnerabilities to craft exploits, and

how they use exploits to attack the systems. It also involves understanding what type

of advantage each type of attack gains an attacker.

Finally, understanding vulnerability classes involves understanding the systems

in which the vulnerabilities are found. Hardware vulnerabilities often involve miscon-

figurations and improper assumptions made during the design of a hardware compo-

nent which allow attackers to gain access to write to or read from protected devices

or segments of memory. Operating system vulnerabilities involve misplaced assump-

tions in the design of the operating system software or any of the software that the

operating system puts trust in. Application vulnerabilities involve ways in which ap-

plications can be made to perform operations that violate the interests of users of

these applications or system administrators. Web-based vulnerabilities involves un-

derstanding software implementation flaws where web-exposed code with logic errors

can allow a person to access information and gain unauthorized privileges on a web

server. Though all of these vulnerability types involve unauthorized access and con-

trol, each requires its own extensive domain knowledge to for a person to be an expert

at finding and analyzing these vulnerabilities.

5.7.2.6 Knowledge and Recognition of Malware. Reverse engineers

working in malware analysis rely on a wide range of knowledge about the functionality

malware can exhibit. SMEs described knowing about what malware does at a high-

level, and also an ability to recognize and interpret malicious behaviors when they

are seen in a program.

Malware knowledge involves understanding the behaviors, mechanisms, and

manifestations of how rootkits, worms, viruses, Trojan horses, botnets, and other

types of malicious software work. It also involves understanding how different classes

of malware are implemented on the target operating system and processor.

SMEs also made reference to knowledge and use of good “lab practices.” Best

practices in analyzing malware involve knowing and being able to apply memory

134

forensics to extract malicious software from a computer system without tainting the

trail of evidence or losing essential data. It also means understanding the effects

malware can have on a host system and what precautions must be taken in to protect

the reverse engineers’ systems and networks from the effects of the malicious software.

To the SMEs, understanding malware also means understanding how the mal-

ware is protected, and being able to get around those protections to analyze the

program.

5.7.2.7 Knowledge of Software Protection Techniques and How They Work.

Programs that employ software protections employ them to prevent reverse engi-

neers from achieving their analysis goals. The SMEs referenced several instances of

encountering software protections while analyzing malicious software or when facing

an industrial protection employed to prevent piracy, tampering, or reverse engineering.

An important element of reverse engineers’ specialized knowledge is in understanding

software protections, how they work, how they can be defeated, and in understanding

other ways to perform the same tasks when they cannot be defeated.

Protection knowledge referenced in the interviews involved understanding the

different types of protections, which among others can include:

• Static analysis protections,

• Dynamic analysis protections,

• Obfuscations,

• System hardening protections,

• Virtualization-based protections,

• Packing, and

• Encryption.

Reverse engineers that analyze malware or software protections need to know

about these areas and how to break or circumvent these protections when they stand in

135

the way of analysis. If breaking a protection is not feasible, the reverse engineer must

know what kinds of actions these protections inhibit so they can generate alternate

actions to accomplish roughly the same things.

5.7.3 Automaticity and Tacit Knowledge. The SMEs were prompted for

information about their tacit knowledge in the interviews. First, they were asked

directly about processes which had become automatic for them. Afterwards, they

were asked to explain what elements of reverse engineering they thought would be

difficult for a novice to perform, provided the novice was given detailed instructions

on how to complete the task.

Tacit knowledge is typically thought of as compiled experience that allows an

expert to act and make decisions in a task more quickly and more effectively than

a novice [59, 137]. The SMEs described the ability to recognize high-level program-

ming constructs, recognize anomalies in assembly language, and to recognize unique

solutions to problems as the primary tacit components of expert knowledge.

5.7.3.1 Recognizing High-Level Programming Constructs. SMEs talked

about the ability to recognize different programming constructs in assembly language

as one of those things that takes a lot of experience to be able to do. An expert

might be able to easily recognize a certain configuration of data as a data structure

in memory, a two-dimensional array, an object instance of a class, or a grouping of

functions. The SMEs described being able to retain the ability to think about the

low-level machine code as the higher-level code structures that they were compiled

from. This knowledge allowed them the capability of concerning themselves about

program behaviors rather than syntax-level details. It also helps them more quickly

think about what elements in the program are important to their goals and which

ones are not.

5.7.3.2 Recognizing Anomalies. The SMEs also discussed their abili-

ties to recognize when the code looked anomalous. Each SME mentioned having an

136

ability to notice if a section of assembly code looks “weird” or if something in the

program “just looks off.” These cues can be an indication that the program is per-

forming unexpected (and possibly malicious) functionality or at least that the reverse

engineer has to do more investigation to learn what is happening.

The SMEs described that beginners might not be able to tell the difference

between code that is doing something unusual or tricky and normal compiler opti-

mizations. However, experienced reverse engineers can look at the same code and

notice the same compiler optimizations they have seen many times. They credited

these recognition capabilities for giving them an intuitive feel for what is normal code

and what could be abnormal protected or malicious code.

5.7.3.3 Recognizing the Approach is Wrong. The SMEs also referred

to having “a sixth sense” that the problem-solving effort was going in the wrong

direction or “down the wrong path.” One SME compared approaches in the past to

the approaches of other reverse engineers who “beat down a path until it’s dead.” This

element of tacit knowledge involves being able to recognize the cues that progress is or

is not being made in the task, and being able to compare that against an expectation

about how the task should be progressing.

5.7.3.4 Recognizing Unique Solutions to Problems. Each of the SMEs

discussed the component of “out of the box” thinking that they perform in reverse

engineering. They mentioned how some reverse engineers are able to think about a

problem and come up with creative solutions that are not directly apparent from the

way the problem presents itself. This ability to recognize a problem as an isomorph or

analogy to another problem is part of what one SME called the “dark art” of reverse

engineering.

The SMEs related stories of getting what seemed like a crazy idea out of nowhere

about how to approach a difficult problem. One SME mentioned going through a

process of clearing out all thoughts and not thinking about the problem directly

137

in order to help allow creative solutions to come. In their relations of stories, the

ultimate solution to their problems incorporated bringing in elements of knowledge

that were outside of the scope of the reverse engineering task, but which made sense

in some metaphorical way to a separate and seemingly unrelated approach, often

within a different problem domain. Regardless of the approach to creativity, each

SME mentioned having an intuitive feel for different ways that a complex problem

could be approached which ultimately provided them the ability to perform the task

more quickly than other reverse engineers.

The SMEs independently referred to reverse engineering as “putting together

a puzzle.” This implies that there may be abstract problem-solving and reasoning

activities which are involved in solving puzzles performing reverse engineering work.

These patterns or activities in the puzzle domain and the reverse engineering domain

seem to be similar enough to each other to make the metaphor resonate independently

with each of the SMEs.

5.8 Conclusions

In this chapter, a semi-structured interview study with subject matter expert

reverse engineers was described to uncover the procedural and conceptual components

involved with reverse engineering executable programs. From the study, four primary

work domains were defined in software reverse engineering:

• Vulnerability discovery,

• Malicious software analysis (including looking for rootkits and backdoors),

• Software protection analysis, and

• Reverse engineering unprotected software.

Across those four domain areas, the study uncovered eight primary goals that

are involved with reverse engineering software. These goals are:

• Understand the purpose of analysis,

138

• Finish the analysis quickly,

• Discover general properties of the program,

• Understand how the program uses the system interface,

• Understand, abstract, and label instruction-level information,

• Understand, abstract, and label the program’s functions,

• Understand how the program uses data, and

• Construct a complete “picture” of the program.

After discussing the procedural aspects of reverse engineering, the conceptual

aspects were described, including how information is used in reverse engineering tasks

and what knowledge is required. The SMEs described information in reverse engineer-

ing tasks as providing the means by which they determine and manage their approach

to reverse engineering. Information-seeking activities were characterized as passive,

active, monitoring, and trustworthiness-related activities.

The conceptual knowledge areas from reverse engineering were described in Sec-

tion 5.7.2. First, the general knowledge areas were presented and then the following

specialized areas of knowledge were presented and described:

• Translating from assembly language into higher-level languages,

• System API functionality,

• System internals knowledge,

• How compilers generate machine code,

• Classes of vulnerabilities and exploits,

• Knowledge of and recognition of malware, and

• Knowledge of software protection techniques and how they work.

The next chapter focuses in on the procedural aspects of reverse engineering

through the analysis of an observational study to elicit the sensemaking process from

139

reverse engineers performing a crackme task. The observational study was designed

using information from the study in this chapter about the goals involved in reverse

engineering and the processes that are shared across the four different reverse engi-

neering problem domains.

140

6. Observational Study

6.1 Introduction

As part of the overall methodology in this dissertation, a case study (Chapter

4) explored conceptual and procedural aspects of a situation involved in the task

of reverse engineering a simple executable program and a semi-structured interview

study (Chapter 5) produced conceptual and procedural aspects that subject matter

expert reverse engineers consider important in understanding an executable program.

This chapter presents an observational study aimed at characterizing the behaviors

involved in reverse engineering a program and eliciting the cognitive process of sense-

making involved in carrying out those behaviors.

First, an outline of the requirements of the Angler task is presented. After that,

the strategies and task performance of each of the reverse engineers participating in

the study is discussed in detail. Next, the verbal protocol analysis to extract the

process involved in making sense of a program in reverse engineering, followed by a

description of each of the major steps in the process. The last section brings the

various pieces together in a theory of sensemaking and presents two examples from

the observations of reverse engineers to describe this theory in the context of the

sensemaking behaviors outlined in this chapter.

6.2 Overview of the “Angler” Task

For the reverse engineering task, a crackme program called “Angler.exe” from

crackme.de [172] was used. IDA divides the Angler program into 15 major subrou-

tines, including those that control the WinMain function that starts the windowing

process and subroutines to present dialog boxes. The program runs within a single

thread of execution in memory. Angler’s file header contains pointers to four program

sections which are mapped into memory at run time: the .text, .rdata, .data, and

.rsrc sections, which are typical for portable executable programs running on Win32

operating systems [65]. The program does not show any indications of having hidden

sections, encrypted code, or code obfuscations.

141

Though there are many strategies to approaching the challenge, in general par-

ticipants had to:

1. Read and understand the goal of the task,

2. Determine that it is a Win32 system function that handles input data,

3. Isolate the function that manipulates the text from the user and serial number

text boxes,

4. Determine that the serial string must be in a particular format,

5. Determine how to “catch” the user-provided text as it flows through the func-

tion,

6. Understand what data inputs lead to the success message in the function,

7. Translate the behavior of the function into pseudocode, and

8. Write pseudocode for a key generator which produces a key for any given user.

name

Reverse engineering the serial number processing algorithm in the Angler crackme

is an involved task which was expected to take longer than an hour to complete. The

program code handling the input string was a lengthy subroutine composed of a series

of 27 basic blocks of assembly instructions, each of which had checks for the correct

value at the end of each block.

The algorithm worked by taking the first four characters of the person’s name

and performing a cyclic redundancy check (CRC) to produce an even-numbered value

from that character. After that, the function finds four pairs of prime factors, each

of which sum to one of the even-numbered CRC values. Once the factors are found,

they are assembled into a format string representation separated by dashes [57]. If

the reverse engineer does not understand these behaviors, the program appears to

be making a large number of arbitrary numerical checks in a very long sequence of

assembly instructions.

142

Table 15 Participant Years of Experience (n = 4).
Mean Standard Deviation

Computer Programming 7.25 1.8
Reverse Engineering 1.5 0.8

6.3 Observations of Task Performance

Four participants were observed performing the Angler task. The task per-

formers were different individuals than the subject matter experts consulted in the

semi-structured interview study in Chapter 5. The group was composed of one Air

Force service member, two government civilian employees, and one contractor. The

group had an average of 1.5 years of experience in reverse engineering and just over 7

years of programming experience (Table 15). Each participant had at least six months

experience reverse engineering software. None of the participants had prior experi-

ence with this particular reverse engineering task although three had solved similar

crackme challenges before.

All of the participants chose to use OllyDbg, IDA, and Immunity to complete the

task. Through the process of reverse engineering, the participants switched between

IDA and OllyDbg to get different representations of “what the program is doing.”

As anticipated, none of the participants were able to finish all eight steps within

the time frame. At the point where the participants’ task periods ended, Participant

A was working on the second step, Participant B was on the third step, Participant

C was working on step 6 and Participant D had just begun step 7. In the next four

sections, each participants’ overall problem-solving in the task is described. After

that, the analysis of verbal data is presented which characterizes the sensemaking

processes in terms of goal-directed planning.

6.3.1 Participant A. Participant A spent the majority of the session trying

to find a representation for the program that would be understandable. The person

looked for ways to translate what the program was doing into higher-level program-

ming language representations, but was not comfortable enough with the tool set

143

and with assembly language to be able to get into the advanced stages of analyzing

the program. The participant began by opening the program, then opening Immunity

Debugger to attach it to the process. The person generated the input “AAAAAAAA”

and looked through the assembly code to find where the text was located. The person

also generated an MD5 hash of the program using IDA and pasted the hash value

into the Angler text window to see what would happen. When these strategies pro-

vided no usable information, the person was not able to get traction with the program

understanding task. Participant A did not show familiarity with the IDA tool and

spent a large portion of the time trying to understand how to show the assembly code

within IDA’s window.

6.3.2 Participant B. Participant B started the task by dragging the icon of

the program into OllyDbg and looking through the program’s assembly code. When

the assembly code representing a structured exception handler became visible, the

person stopped and read through the structure, but it was not clear if the person

recognized the structure. Later, Participant B opened up a window within IDA to

examine the text strings in the program to gather information about the program that

might be useful. During this process, the person mentioned looking for a password or

a serial number hardcoded in memory.

Participant B used information from IDA to go back into OllyDbg with the

goal of looking for a specific address (0x0040708C). After not finding anything usable

at that address, the person stated a hypothesis that the characters representing the

correct serial number were not stored anywhere, but were instead constructed through

a number of data manipulations.

Participant B stepped into the program’s function calls until the program’s ex-

ecution landed in imported USER32.DLL code, which was evidenced by the address

range 0x7C8XXXXX and the DLL name referenced in OllyDbg’s register pane. The per-

son saw the string “allusersprofile=C:\Documents and Settings\. . . ” and interpreted

this to mean that a file was being created that reads a serial number from a user’s

144

profile. The person then spent the majority of the time parsing a string processing

routine in the DLL. This participant did not appear to recognize that the instruction

pointer had dropped down into a DLL function, and thus spent a significant portion

of the task debugging a file name processing algorithm in a Windows system function.

Participant B also showed difficulty determining if the task was going in the right

direction. The person started down the first path that made sense, but it was not the

most effective path to solve the problem. The person had difficulty recognizing pieces

of information provided by the task environment which could have led to a hypothesis

to drive activities in the task. Participant B became caught up in syntactic issues

with the assembly language and did not show the development of a “whole picture”

of the program. When the session time expired, the participant had not yet found

the function that processes the user and serial text. It was not clear that this had

become a goal.

Participant B cited the most mentally difficult thing as understanding the pur-

pose of one of the string processing instructions which was encountered and how it

worked. This further demonstrates that the person was working strictly at the syn-

tactic level of the assembly code rather than on putting together a complete picture

of the program.

6.3.3 Participant C. Participant C started the task by looking at the prop-

erties of the program. This participant monitored the program with Regmon [166] to

gather information about the program from the registry keys the program used. The

person then used this information to open the program in IDA and to gather more

information.

Participant C saw the text “Cyclops” and developed the hypothesis that the

name either came from within the program or was read from a file. To test this, the

person looked in FileMon to see what file operations the program performed. The

person then looked for strings in the program through IDA’s interface, then used the

Data XREF capability in IDA to see what locations referenced that data. Through

145

that process, the person determined that the function where that information was

used was an initialization dialog of some sort, so the person labeled the subroutine

“initializeDialog” in IDA.

Later in the task, the person came across references to the bitmap file which was

used for the face of the Angler window. The discovery of this reference led the person

to a hypothesis as to whether the bitmap was stored in the application or whether

it was stored outside of the program. Some searching led to no real results, and

Participant C gave up this pursuit to gather different information about the program.

Participant C noticed that a function called GetDlgItem was called after the sub-

routine previously labeled “initializationDialog,” so the person looked in the MSDN

documentation to find how GetDlgItem was structured. The person set breakpoints

after the “initializationDialog” subroutine and then executed the program so it ran

up to the breakpoint that had been set. In doing this, the participant gathered infor-

mation that a message box appears, but that the program is not blocking or waiting

for input at that point in the program.

The person recognized that an event handler most likely dealt with the button

press events on the Angler window, so the person looked for where the event handler

was located. The person had a question about how the event handler would work. If

the event handler involved buttons, then it would appear one way, and if it involved

an area of the screen or an area of the window, it would work differently. This led

to the determination that no matter what, an event handler of some type would be

necessary.

After finding what appeared to be coordinates, where a button is being placed

on the screen, the participant “got lost” in the task and became unsure as to how

to approach solving the problem. This led to starting over in the reasoning process

in which the person put together a mental model of causes involved in the program.

These related the message box to being called by the function, which gets called by

an action handler. This also led to a gap in understanding what the GetProcAddress

146

function is and how it works. The person sought out documentation from MSDN in

understanding this function.

After reading through the MSDN documentation, Participant C determined

that the function in question might be the function that handles the text strings from

the user. The participant traced through the function and decided that it looked

logical algorithm, but that it was probably not related to the text from the dialog.

Further down in the program, Participant C noticed the format string and decided

the program was looking for the serial number in a particular format. The participant

planned out an approach to seeing if the function is ever called in the program which

involved setting breakpoints and then putting data in the text box to see if it is ever

called. In the approach, the person planned to track the data as it goes through the

function.

The person came across the GetDialogItemText function call, but after rec-

ognizing a lack of knowledge concerning the values the function returns to the pro-

gram, the person consulted the MSDN documentation. This led to learning that the

GetDialogItemText function returns a pointer to the string on the stack. Participant

C was not sure how items got stored on the program stack and had to restart the

program with the goal of determining if the stack contained a pointer to a string when

the program executed past the call to GetDialogItemText. The person restarted the

program and determined the program did return a pointer to a string on the program

stack. This information led to the hypothesis that the string represented the user-

input serial number, which enabled the participant to locate the code for the serial

number processing algorithm.

Upon finding the function that handled the entered serial number, the person

started to determine the properties of the function. These included the property that

the subroutine checks for the proper number of characters, that the function checks

for 15 characters, and that if there are less than 15 characters, the program jumps to

another location. The person determined that the location does not have code that

147

leads to the success message. Participant C used incrementally gained information in

order to gather new information about the function, such as the observation that the

function splits the input string, and then that the function splits the serial number

into eight-bit chunks.

Participant C elaborated on this strategy as well. The person made a number

of comments that tied address locations in the code to future plans, such as: “that’s

the spot I want to break on the next time I run the executable.” The person used

information gathered to incrementally piece together a plan to see what the value

was on the stack when the function returns and then trace forward to see how the

program uses the value. The participant was working on discovering what data values

led to the function working correctly when the time for the session expired.

6.3.4 Participant D. Participant D also started the reverse engineering task

by taking note of the program’s properties before running the program. The person

quickly looked at the program using a number of reverse engineering tools to see if

the program was protected or whether it appeared to be packed.

After looking at the program’s properties, Participant D ran the program and

immediately formed a background hypothesis that a system call was involved. This

person used the OllyDbg tool to list all of the program’s intermodular calls and

saw the WriteFile and ReadFile system calls. The person specifically looked in

the intermodular call display to find the GetDialogItemText function and found a

version of the function in the list of system calls as USER32.GetDialogItemTextA.

Once Participant D had this knowledge, the person navigated to the function

directly from within the tool and started to investigate how the program handled user-

input data. The person saw the format string comment to the right of the disassembly

and set the tool to highlight “interesting” code branches. The highlighting led the

person to notice four calls to the same function, which identified that function as a

potential point of interest. Participant D used this information to determine further

information about the function.

148

At the end of the function, the person saw an offset address and wanted to

“see if it is important.” The person used OllyDbg to show all of the jumps that the

program takes, then looked for the success message at the end of the jumps. The

person identified this message in the assembly code, possibly from the decoded ASCII

in the comment section, and then set out to determine how the program’s execution

got to that location. The person tried a few different approaches and ultimately gave

up that path to gather more information.

The person went back to the current instruction pointer and began stepping

over code. The person wrote down the jumps within the serial processing function to

see which one of them led to the success message. The person restarted the program

and generated an input and had the hypothesis “EAX should have the value”

The person developed several approaches to solving the problem:

• Setting a breakpoint on the stack variables to see where they are changed, then

restarting,

• Going to the target address and isolating instructions that write to them, and

• Setting a hardware breakpoint and evaluating writes to the address.

The person chose the third option and started running the program until it hit

each of the breakpoints. This approach produced too many instructions that wrote to

that address, so it became too overwhelming and the person gave up that approach

and cleared the hardware breakpoints.

Participant D came to understand the function as one large processing algo-

rithm, and showed how it could easily be patched. After asking for direction, in-

struction was given to follow the instructions that came with the crackme program.

The participant began translating the function into higher-level representations and

instantly became very bogged down. The translation portion of the task was very

difficult to keep track of and appeared to be time consuming and tedious. The person

got lost more than once in the translation and had to backtrack to keep up with

149

current progress. The person made guesses about the meaning of a jump, followed

the jump to gather information, and built criteria to evaluate what the information

would mean while following the jump.

Time expired as Participant D was translating the algorithm into pseudocode.

The person spent a lot of time making sense of the serial processing algorithm and

got bogged down in the conversion of characters to hexadecimal values. This trans-

lation process progressed much more slowly than finding the location of interest and

determining how the function worked at a high level.

Overall, the participant was able to quickly locate the subroutine of interest and

could spend time understanding the format that the serial number was expected to

be in, how the name and serial number data flowed through the program, and how

the serial number processing function worked with other parts of the code.

6.4 Verbal Protocol Analysis

The researcher reviewed the video and verbal data from each participant and

transcribed it into a spreadsheet, broken into one verbal segment per row as discussed

in Trickett and Trafton [194]. Participant B’s video and audio data recordings were

accidentally destroyed during a problem with saving the video file to disk and were not

able to be recovered or transcribed. Participant A’s problem-solving was transcribed,

but was determined to not provide value to understanding the sensemaking process

and was not included in the coding.

For the two remaining participants, their verbalizations were segmented to rep-

resent a single idea during transcription in order to take advantage of other contextual

clues from the audio and video. When a segment contained a shift from one idea to

another, the second idea was recorded in its own row as its own new segment. Where

significant verbal breaks occurred, the subsequent verbalization would also be recorded

on a new row as its own segment. When actions in the video data were observed, a

row was created but was not annotated with text.

150

Table 16 Rules Used to Code Segments.
Verbal Segment Coded As
Describes a desired future state Create goal representation
Describes activities to accomplish goal Plan approach
Refers to performing an ongoing activity Carry out plan
Refers to status of ongoing activity Carry out plan
Verbalizes noticing information Sense information
Refers to recognizing relevance of information Interpret information
Makes statement from relevant information Update knowledge
Offers an assumption Generate hypothesis
Asks question about an object Generate hypothesis

After all of the available data was transcribed, it was coded according to the

following coding taxonomy from the literature review in Chapter 2:

• Create goal representation,

• Plan approach,

• Carry out plan,

• Sense information,

• Interpret information,

• Update knowledge, and

• Generate hypothesis.

The coding taxonomy was developed from categories described in the litera-

ture review on sensemaking in understanding programs (Section 2.5) and from the

portion of the case study in Chapter 4 which related to the procedural aspects of

program understanding. The taxonomy contains functions involved in the standard

information-processing loop used in programming artificial agents to interface with

the environment [165], with the addition of involving the generation of goals and

hypotheses.

The data from the two participants were coded according to the coding rules in

Table 16.

151

The researcher coded all of the data (592 segments) and afterwards a second

coder independently coded 29.2 percent of the segments (173 sequential segments)

from a starting point randomly selected by the second coder. Cohen’s Kappa [47] was

computed to measure interrater reliability for the 173 segments coded by both coders.

Cohen’s Kappa measures the agreement between coders on positive and negative

instances while taking into account the likelihood of agreement based on chance.

Cohen’s Kappa is computed as:

κ = (Po − Pc)/(1− Pc)

Po is the proportion of agreements between the coders and Pc is the proportion of

agreement which would be predicted by chance. Cohen’s Kappa of 0.0 to 0.4 indi-

cates little agreement, 0.6 to 0.8 indicates significant agreement, and 0.8 and above

represents near perfect agreement [41, 194]. As recommended in Trickett and Trafton

[194], after both coders independently coded the data, the interrater reliability was

calculated and the coders met to discuss disagreements. If codes had weak interrater

reliability (0.4 or below), the categories would be removed or changed and the data

was recoded.

Disagreement and re-categorization occurred once during the coding process.

The code “Create Goal Representation” initially was divided into two distinct cate-

gories: “Create Goal” and “Create Goal Representation,” but in the initial coding,

there was not enough agreement between the coders to keep both categories. They

were merged into the category “Create Goal Representation” and the data was re-

coded. The final interrater reliability for the dual-coded verbalizations was 0.82,

which demonstrates significant to “near perfect” agreement in all categories (Table

17). Following standard practice, the remainder of the verbalizations were coded by

the researcher [194].

6.4.1 Computing State Transitions. The state transitions from two of the

tasks were computed to determine in what order reverse engineers perform each of

152

Table 17 Interrater Reliability of Coding Scheme (173 segments).
State Category Cohen’s Kappa

a Create goal representation 0.93
b Plan approach 0.82
c Carry out plan 0.78
d Sense information 0.72
e Interpret information 0.75
f Update knowledge 0.81
g Make hypothesis / assumption 0.92

Average agreement 0.82

these processes. Transitions between the states indicated movement through the

problem-solving process

As described in Bakeman and Gottman [8], matrices of state transition proba-

bilities were computed to determine the sensemaking process used in the task. For m

states Sj and Sk, and n segments i, the total transitions between each state Sj and

state Sk are computed as:

Tr(Sj, Sk) =
n∑

i=1

(Si,j × Si+1,k) : S ∈ (0, 1) (1)

Where Sj = Sk, the transition is computed as a self transition and accounted

for as such. The total transitions departing a state Sj are computed as:

Tr(Sj, out) =
m∑
k=1

Tr(Sj, Sk) (2)

The total transitions entering a state Sk are computed as:

Tr(in, Sk) =
m∑
j=1

Tr(Sj, Sk) (3)

The overall transition probabilities for state Sj to Sk are computed as:

P (Tr(Sj, Sk)) =
1

2
(
Tr(Sj, Sk)

Tr(Sj, out)
+
Tr(Sj, Sk)

Tr(in, Sk)
) (4)

153

Table 18 Number of Transitions (Participant C).
Tr(Sj, Sk) a b c d e f g

a 3 5 2 3 4 0 1
b 3 5 5 8 1 0 4
c 2 3 1 11 3 2 0
d 3 3 4 26 24 3 8
e 0 4 8 14 15 8 10
f 1 0 0 3 3 4 8
g 6 5 2 6 9 2 19

Table 19 Transition Probability Matrix (Participant C).
P (Tr(Sj, Sk)) a b c d e f g

a 0.17 0.24 0.10 0.10 0.15 0.00 0.04
b 0.14 0.20 0.21 0.21 0.03 0.00 0.12
c 0.10 0.13 0.05 0.33 0.09 0.10 0.00
d 0.10 0.08 0.12 0.37 0.37 0.10 0.14
e 0.00 0.11 0.25 0.22 0.25 0.28 0.18
f 0.05 0.00 0.00 0.10 0.10 0.21 0.29
g 0.23 0.15 0.07 0.10 0.17 0.07 0.38

State transitions for Participant A were not computed because the participant

did not complete enough of the task to elicit useful data about state transitions. The

record of Participant B’s verbal data was lost through a computer error as described

above. The state transitions for the two remaining participants are shown in Table

18 and Table 20, respectively. The transition probabilities for the two participants

are shown in Table 19 and Table 21, respectively.

Table 20 Number of Transitions (Participant D).
Tr(Sj, Sk) a b c d e f g

a 10 12 8 10 7 0 1
b 8 8 9 11 4 0 3
c 3 4 2 10 4 3 3
d 5 13 4 47 19 9 6
e 9 3 3 15 12 8 1
f 5 1 2 6 4 10 4
g 7 2 1 5 1 2 2

154

Table 21 Transition Probability Matrix (Participant D).
P (Tr(Sj, Sk)) a b c d e f g

a 0.21 0.26 0.22 0.15 0.14 0.00 0.04
b 0.18 0.19 0.26 0.18 0.09 0.00 0.11
c 0.08 0.12 0.07 0.22 0.11 0.10 0.13
d 0.08 0.21 0.09 0.45 0.28 0.18 0.18
e 0.18 0.06 0.08 0.22 0.24 0.20 0.03
f 0.13 0.03 0.07 0.12 0.10 0.31 0.16
g 0.25 0.07 0.04 0.15 0.03 0.08 0.10

The mean transition probabilities were computed as 1/N
∑N

h P (Tr(Sj, Sk)) for

participants h through N . The mean transition probability was µ = 0.14 and the

standard deviation was σ = 0.09 and a threshold for the significance of a transition was

set at µ+σ = 0.23. A list of the significant transitions at the threshold P (Tr) ≥ µ+σ

is shown in Table 22.

The transition probability values from the two participants were compared using

test from Anderson and Goodman [7] to determine whether two samples could have

come from the same underlying Markov chain (Ho : P 6= P o). In this notation,

njk =
∑

j Tr(in, Sk). The equation p̂
(h)
jk = njk/nk represents the maximum likelihood

estimates in the probability matrix for participant h. The pooled maximum likelihood

estimates p̂
(pooled)
jk represents the maximum likelihood estimates obtained by adding

the data from both participants, and C−1
jk = (1/n1

jk) + (1/n2
jk). For two participants,

the test is:

χ2
jk =

∑
j

Cjk(p̂
(1)
jk − p̂

(2)
jk)2/p̂

(pooled)
jk (5)

For this test, χ2 = 201.97 which is above the critical value of 63.69 which

rejects the null hypotheses that the two participants’ data do not come from the

same underlying first-order Markov chain with significance p = 0.01 and (rows −

1)(columns− 1) degrees of freedom.

This test provides some evidence that there exists an underlying process of

sensemaking which may be very similar to the processes elicited from these two par-

155

Table 22 Prominent Transitions (P (Tr) ≥ µ+ σ).
Sj Sk Mean transition probability
a b 0.25
b c 0.24
c d 0.28
d d 0.41
d e 0.33
e e 0.25
e f 0.25
f f 0.26
f g 0.24
g a 0.24
g g 0.23

ticipants. Nevertheless, before establishing its generality, this sensemaking process

should be further investigated in studies with greater numbers of participants and in

different task domains. The problem-solving processes of these two participants are

useful to provide a framework for thinking about and researching how people make

sense of situations.

6.5 Sensemaking in Reverse Engineering

Figure 15 shows a process of how the sensemaking behaviors were used by reverse

engineers attempting to solve the Angler task. The processes encapsulated within

each of the states are described below. A theory of sensemaking is then presented

which incorporates these sensemaking behaviors into an overall theory of how people

understand executable programs using assembly code representations.

When the participants were working on problems in the task, they continually

moved through a sensemaking loop, which included the establishment of a goal rep-

resentation, a plan to achieve the goal, carrying out the actions of the plan, sensing

information from the task environment, interpreting the information, potentially up-

dating knowledge if the information was relevant, and developing hypotheses based

on the new knowledge. The sensemaking loop shown in Figure 15 shows this cycle

156

(g) Create

hypothesis

(a) Make goal

representation

(b) Plan

approach

(c) Carry

out plan

(d) Sense

information

(f) Update

knowledge

(e) Interpret

information

0.25

0.24

0.28

0.41

0.33

0.25

0.27

0.24

0.24

0.23

0.25
0.26

Figure 15 Sensemaking Processes from the Angler Task.

157

as a Markov model populated with the probabilities that each state transition would

occur.

While progressing through this process, the reverse engineer gathers informa-

tion and constructs or refines a mental model of the program. The program involves

different components, such as functions, the code’s execution path, data in the pro-

gram, and sequences of instructions. As a reverse engineer works on the problem, he

or she gathers information about these components and relates them to items in the

task environment pertaining to elements of the program.

6.5.1 Create Goal Representation. When a reverse engineer generates a goal

representation, the person is expressing what they want in terms of features of the

desired state. This goal representation can be in the form of a desired configuration

of the situation, or as a gain in information about the program. Both types of goals

can be represented in the same way.

For example, some of the goals in the data from Participant C include: infor-

mation about the application as it runs, information about what Angler was doing

at a given time, information about whether a file is read into the program, informa-

tion about where the string “Cyclops” is used, and information about how variables

change in the serial number processing function. Goals from the data pertaining to

situations involve the desire to be at a particular point in the program’s execution,

and to “catch” the program after the dialog box handling function is called.

6.5.2 Plan an Approach and Carrying out the Plan. Once a reverse engineer

had verbalized a goal, this often was immediately followed with the development of a

partially-constructed plan of actions which would enable the attainment of the goal.

If the goal was an information goal, the plan involved actions which were believed

to help gather the required information. If the goal was a situational goal, the plan

involved sequences of actions which were believed to configure the situation in the

desired manner.

158

Table 23 Deliberation on a Plan.
Verbalization
“I’m not sure what happens after the dialog gets initialized”
(7 seconds silence)
“Maybe if I try debugging it and stick a breakpoint after what I think is the
initialize function”
“It won’t hit the function until it’s done initializing”
“And maybe it goes into waiting or something”
“So I’m going to try debugging the application”
“And set a breakpoint after what I think is initialize dialog”

Sometimes a goal readily lent itself to a plan which was formed and followed

immediately. An example of this is the goal implied by the segment: “I’m going

to set a breakpoint on this instruction.” In this case, the actions involved seem

straightforward and can be accomplished immediately:

1. Shift attention to the instruction,

2. Encode that is the correct instruction,

3. Press up until the selection indicator is on that instruction,

4. Press the F2 key to enable the breakpoint, and

5. Encode that the color of the instruction has changed to red.

Other times the goal did not directly lend itself to a plan, so there was a delibera-

tion process to construct and evaluate an approach that would generate a usable plan.

Sometimes the deliberation was not verbalized, but it was inferred by the presence of

long pauses. An example of deliberation over a plan is in Table 23.

Participants determined the best action for their situation by thinking through

hypothesized behaviors and inferred future states of the program. A plan as verbalized

involves a set of actions in which some of those actions are sequenced. Sometimes the

sequencing of actions does not happen until the actions are taking place and conflicts

are detected.

Other plans from the participants’ data include looking at strings by opening up

the strings window, running the program again to see how the stack changes, labeling

159

a function so it can be identified later, inserting a breakpoint after the initialization

routine to “catch” the program, writing down a list of function addresses to look

up, and tracking data through a function. Each of these plans suggests a number

of actions which must be taken. Carrying out a plan simply involves performing the

actions specified in the plan.

6.5.3 Sensing Information. Carrying out actions in the task environment

often involves changing the configuration of the elements, so information is constantly

being sensed. Not all of the information in the task environment is relevant to the

reverse engineer’s goals, so a large amount of information appeared to be discarded

without evidence of having been mentally processed.

A verbal segment was coded as “sensing information” when a participant simply

read and stated information from the environment without giving any indications

of processing the meaning of the information. Often, this information consisted of

hexadecimal values, numbers, and names of labeled items.

Participants sought out information both passively and actively. When partici-

pants used passive sensing of information, they were running the program to gather

information about the program’s behaviors, or looking through the disassembly to

gather clues that might be useful later. When participants sought out information

actively, they set a goal for what information they wanted, made a plan to acquire that

information, and followed the plan by carrying out the task actions. For an example,

a participant was observed writing down the addresses of system calls and then using

the search features of the debugger to find them. Participants also actively sought out

behaviors by isolating phenomena. More than one participant was observed stepping

over a system call, then looking to see what had changed in the interval from before

the system call to after it had been executed. Participants were also actively sensing

information when they made a plan to acquire information about whether strings can

be found in memory. The participants entered strings of text characters in the serial

160

text field in the program and then looked for those same values in the program when

the program’s execution stops at a breakpoint.

6.5.4 Interpreting Information. Instead of merely sensing information con-

tent in the environment, participants interpreted the information by applying meaning

to the information from their knowledge. Sometimes this dealt with whether or not

the information was relevant. Other times it served as a recognition of some structure

or component in the program. The following set of verbal segments provides examples

to distinguish sensing information from interpreting information:

• “Angler by Cyclops” - sense information.

• “It is the title of the window” - sense information.

• “It doesn’t appear anywhere but it’s the name of the window” - interpret infor-

mation.

• “It shows up in the task bar” - interpret information.

• “So, that function gets called.” - update knowledge.

When participants did not have the knowledge to understand what they were

looking at, their activities were categorized as “sensing information” instead of “in-

terpreting information.” Because of a lack of experience with IDA, Participant A was

not able to match the affordances in the task environment with concepts about what

information representations the IDA tool could provide.

When people explore program behaviors and explore assembly instructions as

above, they notice information from the environment and try to connect that infor-

mation with some knowledge they have. to determine whether the information is

relevant and what it means.

6.5.5 Updating Knowledge. When participants in the verbal protocol were

interpreting information, they matched an object in the environment to a concept

from their knowledge. However, when participants were coded as updating their

161

knowledge, they summarized the information from repeated cycles of sensing and

interpretation into a simpler statement which they could potentially use later. After

a certain point in reverse engineering the program, as more meaningful information

is gathered about the program, the reverse engineer compiles the information into a

statement, such as “So, that function gets called” or “that bitmap is stored inside the

executable in one of the resources.”

Segments coded as “updating knowledge” almost always appeared like sum-

marizations and distillations of the important parts of information which had been

encountered, and how it related to existing stored knowledge. After observing the

process of sensemaking play out while coding, the second coder referred to being

able to detect this process when the person was “compiling” their information into

knowledge.

6.5.6 Generating Hypotheses from Compiled Knowledge. Once participants

had added new summarized knowledge to their mental model of a program, they often

came up with a hypothesis directly afterward. Participants appeared to generate

hypotheses in the task after deducing the logical conclusions of new knowledge they

had acquired.

Hypotheses and assumptions were generated mainly after participants sensed

and interpreted information and updated their knowledge with the implications of

this information. The hypotheses that resulted from this process were typically used

to generate a new goal, such as to seek out information from the environment to

confirm or refute the fact.

Hypotheses often were observed in the form of a statement that can be verified,

such as: “It looks like GetDialogItem creates a handle to some part of the dialog

that’s open.” In this case, a subsequent sensemaking loop can be started with the

goal to verify whether or not the GetDialogItem function creates such a Window

handle.

162

Participants gathered information to form hypotheses as well. When partici-

pants investigated system calls, they looked up the arguments and return values for

the system calls in the operating system’s documentation in order to make assump-

tions about how the system call was being used in the context of the program.

Once a person formed a new hypothesis, it enabled the person to create a

new goal to seek information from the task environment about some property of the

program, its components, or its behavior. However, when participants did not appear

to have the knowledge to develop a hypothesis, the person was not able to generate

information-seeking goals and got “stuck” in the task without a way forward. This

was seen when Participant A and Participant B followed a set of actions which would

not provide them valuable information, and carried those actions out without gaining

useful information about the program that could be compiled into knowledge.

When participants reverted to exploring instructions or behaviors of the code

in the middle of a problem-solving task, it was often the case that the person had lost

sight of any other attainable goal or could not formulate a hypothesis that could be

investigated.

6.6 Conclusions

This chapter described an observational study which analyzed data from par-

ticipants performing reverse engineering tasks. The requirements of the Angler task

were described, followed by the details of each of four participants’ performance in

the task. A verbal protocol was conducted to extract state transition patterns from

two of the participants’ reverse engineering sessions. From the verbal protocol data, a

process of sensemaking was elicited and the steps of that process were described in a

theory of how people make sense of executable programs. The next chapter presents

the overall conclusions of the dissertation, discusses the implications of the theory

developed from the studies in this dissertation, and presents areas for future research

investigation.

163

7. Conclusions

7.1 Overview of the Research

The research problem of the dissertation was to understand how people make

sense of programs, and particularly to elicit the conceptual elements and procedural

elements of reverse engineering knowledge involved with successful task performance.

Chapters 4, 5, and 6 presented three studies that elicited this information from various

perspectives.

7.1.1 The Case Study. The first method, presented in Chapter 4, was a

case study that investigated the situational factors involved with reverse engineer-

ing executable programs. It explored the information and affordances in the reverse

engineering tools, the goals, plans, hypotheses, information-seeking behaviors, and

attentional focus used in the task. It also examined concepts used in the task and

identified the following conceptual themes that can be used to organize conceptual and

procedural knowledge content involved with making sense of executable programs:

• System concepts,

• Task environment concepts,

• Situational concepts,

• Cognitive concepts, and

• Background knowledge concepts.

These categories of concepts provided a framework on which the other studies built.

7.1.2 The Semi-Structured Interview Study. Chapter 5 explored conceptual

and procedural knowledge further and elicited those elements at a broader level from

semi-structured interviews with subject matter expert reverse engineers. The analysis

of the interviews produced a number of major goals involved in reverse engineering

executable programs:

• Understand the purpose of analysis,

164

• Finish the analysis quickly,

• Discover general properties of the program,

• Understand how the program uses the system interface,

• Understand, abstract, and label instruction-level information,

• Understand, abstract, and label the program’s functions,

• Understand how the program uses data, and

• Construct a complete “picture” of the program.

These goals (and one constraint) are seen by experts as essential to the process

of understanding an unprotected program. The information-seeking goals also imply

a number of components that are involved in a mental model of the task.

The semi-structured interviews revealed a number of ways that information-

seeking behaviors occur and are used in reverse engineering: passive discovery, active

information seeking, continuously monitoring information, verifying the trustworthi-

ness of information, and monitoring goal-related cues. Passive discovery involves the

goal of “gathering information,” while actively seeking information from the envi-

ronment and continuously monitoring information involve a specific question, a data

source, and potentially an assumed hypothesis. Verifying the trustworthiness of in-

formation involves goals aimed more particularly at verifying information so it can be

relied upon for future goals in the task.

In order for a reverse engineer to successfully make sense of an element of the

program, background knowledge is required to interpret the information and to enable

the reverse engineer to develop better hypotheses and construct better information

goals. The semi-structured interview study produced a group of typical and special-

ized knowledge requirements involved with reverse engineering executable programs

which the SMEs described as essential specialized background knowledge. The spe-

cialized knowledge requirements include:

• Translating from assembly into higher-level languages,

165

• System API functionality,

• System knowledge,

• How compilers generate assembly code,

• Classes of vulnerabilities and exploits,

• Knowledge and recognition of malware, and

• Knowledge of software protection techniques.

Each of these types of specialized knowledge provide a reverse engineer with

the ability to interpret different types of information which are required when solving

more advanced reverse engineering problems, such as malicious software analysis,

software protection analysis, and vulnerability discovery tasks. The organization of

goals and concepts from the semi-structured interview study were used to design the

observational study.

7.1.3 The Observational Study. In the third study, presented in Chapter

6, an observational study was undertaken to elicit the process of low-level procedural

behaviors involved with making sense of a program. The study adapted the taxonomy

of sensemaking behaviors constructed in Chapter 2 to categorize the activities of

participants working on software reverse engineering tasks.

Observations and notes from four participants were used to represent major

goals in the task, and verbal and video data from the two most successful participants

was coded and analyzed to build a process model of sensemaking of reverse engineering

and the theory about how people use the process to make sense of programs while

reverse engineering.

The sensemaking process elicited from the verbal protocol analysis was used to

create a theory of reverse engineering which was described in Chapter 6.

166

7.2 Summary of Research Contributions

This dissertation has resulted in four primary contributions to the scientific

body of knowledge:

1. A description of the representational gap in software reverse engineering and

conceptualization of reverse engineering as a sensemaking task,

2. The decomposition of situational factors in the process of understanding exe-

cutable programs,

3. An elicitation of the structure and content of concepts and procedures in reverse

engineering from subject matter experts, and

4. A theory that describes the process of sensemaking in reverse engineering.

These contributions provide the way to bridge the representational gap between

executable representations of programs and high-level conceptual representations that

reverse engineers use in practice.

7.2.1 Conceptualization of Software Reverse Engineering as a Sensemaking

Task. The description of the representational gap in software reverse engineering

and the process of “sensemaking” in reverse engineering was elaborated in Chapter 2.

This description provided a conceptual framework with which to approach how reverse

engineers understand executable programs from assembly language representations.

7.2.2 Situational Aspects of Reverse Engineering Executable Software. The

decomposition of situational factors involved in understanding executable programs

was presented in Chapter 4. This contribution analyzed and described different ab-

stractions used in reverse engineering to represent aspects of the task environment,

knowledge, and the task’s requirements and how they interact in a reverse engineering

situation.

7.2.3 Structure and Content of Concepts and Procedures in Reverse Engineer-

ing. The elicitation of the structure and content of concepts and procedures

167

involved in reverse engineering executable programs is found in Chapter 5. These

concepts and procedures provide the foundation for higher-level goals, rules, and con-

cepts necessary to automate aspects of program understanding tasks.

7.2.4 Theory of Sensemaking in Reverse Engineering. The culminating

contribution of the dissertation was the development of a theory of sensemaking in

reverse engineering. The theory involves a cycle of seven sub-processes:

• Goal representation,

• Planning,

• Carrying out a plan,

• Sensing information,

• Interpreting information,

• Updating the mental model, and

• Generating a hypothesis.

Unlike other theories of sensemaking, this theory provides clues to how this

process could be computationally realized and makes claims about how people interact

with the environment which can and should be empirically tested.

The theory of sensemaking in reverse engineering proposes that reverse engineers

make sense of programs through goal-directed information seeking to discover the

purpose of the program, properties of the program, the program’s system interface,

the program’s instruction-level and function-level information, and how the program

uses data. The process of sensemaking is developed in Chapter 6 and is presented in

Figure 16.

Figure 16 presents a conceptual framework to describe the different elements of

conceptual and procedural knowledge involved in how people make sense of executable

programs. The diagram depicts subgoals required to develop a mental model of a

program along with sensemaking loops for each subgoal. The subgoals shown are

168

A Mental Model

 of the Program

Goals of the task

Plans of action

Program properties

System calls used

Sequence of calls used

Important instruction groups

How functions work together

What each function does

Data flow through the program

Purpose of Analysis

Program Properties

System Interface

Instruction Information

Function Information

How Data is Used

Sensemaking in the Sub-Goals Sensemaking in the Overall Goal ...

Create

hypothesis

Make goal

representation

Plan

approach

Carry

out plan

Sense

information

Update

knowledge

Interpret

information

Figure 16 Sensemaking in Reverse Engineering.

those identified from the semi-structured interview study with subject matter expert

reverse engineers.

As a reverse engineer moves through the overall sensemaking process, the person

must come to understand particular pieces of information about the program. For

instance, to understand how the program uses the system interface, the goals of the

person involve discovering information about how the system interface is used. This

information can be in the form of system calls that the program uses or sequences

of system calls. As a person accumulates information about the system interface, it

may lead to information about sequences of instructions that are important, general

properties of the program, and so on.

The reverse engineer brings background knowledge to the process, which enables

items in the task environment to be recognized as relevant and interpreted. The

reverse engineer updates knowledge with relevant information and performs actions

in the task environment, both to change the state of the program and to gather more

information to meet one or more of the other information requirements of the task.

As the reverse engineer acquires new information, he or she updates knowledge

about the structure, mechanisms, and behaviors of the program in a mental model of

the program. The reverse engineer’s mental model of the program contains elements

that are related to background knowledge (like programming patterns, assembly lan-

guage knowledge, and so on), and elements that are related to the current situation

169

(such as the sequence of function calls which were just executed). These items are

represented mentally by the reverse engineer and are used to construct a model of

the overall “picture” of the program, which specifies the program in terms of relevant

mechanisms, behavioral properties, and structural properties.

The sensemaking process involves setting information goals, generating a plan

to achieve those goals through actions, carrying out the actions of the plan, sensing

information, interpreting relevant information, updating knowledge, and generating

hypotheses from the updated knowledge. The theory makes the claim that the hy-

potheses that drive sensemaking are generated from deductions caused by integrating

conceptual information with prior knowledge. These hypotheses create opportunities

for the reverse engineer to seek information to verify some piece of stored knowledge

about the program.

The process is not necessarily linear, in that a reverse engineer continually moves

back and forth between different sub-goals, making sense of these different elements

and gaining information in the process. Nevertheless, as more information accumu-

lates about properties of the program, properties of functions, sequences of instruc-

tions, system interactions, and how the program uses data, the person is developing

a mental model of the program.

Various conceptual components of knowledge feed into sensemaking and enable

a person to make sense of some aspect of the program. For instance, in order to

understand what sequences of instructions are important in the program, a reverse

engineer has to have top-down conceptual knowledge about the behaviors that pro-

grams perform, the behaviors that the target program is likely to perform, and how

these behaviors can be represented in assembly language.

During the process, the person is performing a macro-level sensemaking process,

where the goal is not to understand the individual elements of the program, but

instead to understand what the subject matter experts interviewed in Chapter 5

described as the “complete picture of the program,” or the mental model of the

170

executable program. This “complete picture” or mental model of the program includes

representations of the goals of the task, plans of action, program properties, system

calls used, sequences of calls, important instruction groups, the behaviors of functions,

how functions work together, and how data flows through a program.

7.3 Implications of the Research

This dissertation has made an essential step toward bridging the representational

gap between assembly language representations of programs and the way that reverse

engineers think about executable programs in reverse engineering tasks. The results

of this research can immediately be used to inform design considerations of reverse

engineering tools that take advantage of how people process information in reverse

engineering tasks. Understanding the different types of goals and concepts that people

pay attention to while reverse engineering is helpful in that representations can be

tailored to integrate information goals and documentation of a program into the task.

The results of this research can also be used to improve the education and

training of reverse engineers to perform in Air Force cyberspace operator roles. The

domains of knowledge requirements described in Chapter 5 can be further decomposed

to develop curricula and training aids for helping personnel learn what concepts and

procedures they need to know in order to quickly make sense of what a program is

doing and how the program is structured. The taxonomy of goals discussed in Chapter

5 can be modified into samples of behavior which can enable one to demonstrate a

reverse engineer’s performance in a program understanding task.

Another implication of the research includes one of the roles for which this

research was directly intended: as a first step to computationally modeling reverse

engineer’s comprehension of programs from executable representations. Modeling

cognition in reverse engineering was not previously possible because there was no

indication as to the goals, concepts, state representations, or mental representations

which were involved with reverse engineering tasks. This dissertation explored each

171

of these areas through empirical investigation, and now this cognitive modeling work

can take place.

7.4 Areas for Future Research

There are a number of areas which have been identified as needing future re-

search effort in order to progress. Areas where future research is needed fall into three

categories:

1. Improving capability in reverse engineering executable programs,

2. Further researching the theory and applications of sensemaking, and

3. Improving capabilities in knowledge elicitation and qualitative data analysis

7.4.1 Improving Capability of Reverse Engineering Tools. A number of areas

are ripe for research for those intending to develop expertise in reverse engineering,

malware detection, and vulnerability analysis. First, is using the sensemaking pro-

cess to impelement reverse engineering tools that allow reverse engineers to make

sense of executable programs more quickly. There are theoretical and technical chal-

lenges which underlie each of the cognitive enhancements for tools, such as defining

representation commitments and definitions of data standards for disassemblers and

debuggers, efficient constraint-based search, and managing the additional data re-

quired to support these aspects of the tools with as small a memory footprint as

possible.

A second area for reverse engineering tool development is involved in incorpo-

rating conceptual and procedural knowledge into reverse engineering tools. Many

knowledge domains can be expressed through description logic formalisms. Develop-

ing reverse engineering tools which can take advantage of automated inference tech-

niques could help reverse engineers better sift through and sort through the complex

information space provided by reverse engineering tools.

172

A third area for improving reverse engineering capability is through developing

and testing training curricula based on the organization of knowledge presented in

this dissertation. As organizations continue to put more trust into automated infor-

mation systems to support their critical missions, criminals and adversaries will use

the inevitable weaknesses in software to exploit organizational dependencies and lack

of understanding of low-level technologies. Better trained Air Force personnel work-

ing in cyberspace operations would have the opportunity to be at the leading edge of

the problem in discovering vulnerabilities and threats, instead of continually being at

the lagging edge with organizations that find out about their system vulnerabilities

from outside security researchers, or after attacks on their systems.

More research needs to be done in mapping high-level program behaviors and

features of individual instructions. More work is needed in developing and integrating

semantic web technologies into disassembly-based debuggers to take advantage of the

inference mechanisms they provide for higher-level reasoning. Various representations

discussed need to be worked out, developed, and tested with human users to optimize

reasoning and performance in the desired tasks. Additionally, there is still further

research needed in the basic questions of how hypotheses are generated and selected

and how they should be represented. More work is needed in employing computational

approaches to seeking information based on hypotheses, testing the information, and

integrating the results of that process into a system knowledge base. Finally, more

work is needed in developing these tools so their reasoning is efficient and provides a

useful engineering advantage to those that analyze code from assembly language.

7.4.2 Further the Theory and Application of Sensemaking. Research work

in developing a general computational theory of sensemaking is required. This can be

performed through the development of computational process models to describe the

cognitive activities outlined in this dissertation, as well as describing them at a higher

level of abstraction. Computational cognitive models expressed within a cognitive

architecture make commitments to the representation of human cognition in such a

173

way that they can be used to predict errors in training applications or cognitive tutors,

perform as intelligent teammates or decision aides, and allow testing of theoretical

propositions in cognitive science.

Theoretical work is required in developing a smaller set of sensemaking tasks

which can be used to develop the aspects of sensemaking theory through experimental

trials with greater numbers of untrained participants (for example, college students).

Experimental work is required in validating each of the steps in the process and

modeling work is in order to understand how people perform each of the cognitive

behaviors involved in the sensemaking process.

Additionally, to provide value in studying sensemaking, work is also needed in

developing more realistic synthetic task environments. Better task environments can

provide ways to study sensemaking in many different task areas. They can also allow

data collection from elements of the sensemaking process in other realistic environ-

ments, but which still capture the important aspects of moving through a complex

data space where computational algorithms are often not able to perform well without

incorporating heuristics..

Each of the phases in the sensemaking theory described in this dissertation

should be investigated rigorously to verify their applicability to broader populations

and to other sensemaking problems in different domains. Additionally, more work

is needed in casting the sensemaking problem in mathematical or computational for-

malisms so that more precise hypotheses can be generated. Finally, the theories

of sensemaking should be tested in other areas where sensemaking and analysis are

believed to be involved to develop training and technologies that improve human

performance in those tasks.

7.4.3 Improving Methodologies in Knowledge Engineering. Researching as-

pects of cognition presents its own set of challenges in that direct data is not available

and inferences must be made throughout. These challenges are compounded by the

174

lack of suitable knowledge representation formalisms at the appropriate level of ab-

straction to express the results of the research.

One of the major challenges in performing the dissertation research was that

knowledge representation formalisms were either too detailed to be tractable, or too

broad to be meaningful. When researchers must represent the complex cognitive

work of many participants, especially those that are communicating with each other,

the task could become overwhelming for any researcher. More methodological work

and support engineering is needed in tools, techniques, and technologies which can

facilitate knowledge engineering work at a large scale.

Better representation formalisms are needed to express the separate areas of

knowledge, tasks, task environments which apply to many domains. These areas are

intermingled in many formalisms, which makes it difficult to express complex func-

tionality, reuse models, or grow the scale, robustness, and capabilities of automated

or semi-automated knowledge-based work.

There are yet many areas uncovered in understanding how reverse engineers

make sense of programs. As modest as are the achievements of the study, the quest for

understanding how people solve real-world problems is a small step to incrementally

advancing humanity’s understanding of the unexplored aspects of the intelligence,

knowledge, understanding, and consciousness.

175

Appendix A. Request for Exemption from Human Experimentation

Requirements

14 February 2010
MEMORANDUM FOR AFIT/ENG

AFIT/ENR
AFRL/Wright Site IRB
IN TURN

FROM: AFIT/ENG/DCS-10M

SUBJECT: Request for exemption from human experimentation requirements (32
CFR 219, DoDD 3216.2 and AFI 40-402) for Cognitive Task Analysis of Software
Reverse Engineering

1. The purpose of this study is to determine the cognitive information processes un-
derlying how problem solvers construct and reason with abstractions during software
reverse engineering. This study should shed light on what guides people in decisions
on how to reduce information to make reasoning in complex problems tractable. The
research findings should be applicable to many difficult problems in cyber security and
decision making. The results are intended to be published in peer-reviewed scholarly
journals as well as in the doctoral dissertation.

2. This request is based on the Code of Federal Regulations, title 32, part 219,
section 101, paragraph (b) (2) Research activities that involve the use of educational
tests (cognitive, diagnostic, aptitude, achievement), survey procedures, interview pro-
cedures, or observation of public behavior unless: (i) Information obtained is recorded
in such a manner that human subjects can be identified, directly or through identi-
fiers linked to the subjects; and (ii) Any disclosure of the human subjects’ responses
outside the research could reasonably place the subjects at risk of criminal or civil lia-
bility or be damaging to the subjects’ financial standing, employability, or reputation.

3. The following information is provided to show cause for such an exemption:

3.1. Equipment and facilities: The equipment and facilities used for the study will
be a personal computer running VMWare Workstation, Windows XP operating sys-
tem, IDA Pro disassembler, OllyDbg debugger, and HEdit hex editor software. The
research will also involve taking video captures of the computer screen, audio record-
ings of a ’think aloud’ protocol, while a subject reverse engineers computer software.
Audio recordings of the subject’s problem solving will be taken, and sketches and
handwritten data (boxes and pictures) will be retained for analysis by the researcher.
The interviews will take place over the telephone or in person at the subject matter
experts’ workplace. The task analysis will take place at the Cyber Trust Lab on the

176

third floor of building 620 at the Air Force Research Laboratory’s Sensors Directorate
at Wright-Patterson AFB, OH.

3.2. Subjects: There are three phases to this research: 1.) the knowledge elicita-
tion phase, 2.) the task analysis phase and 3.) the knowledge representation phase.
The concept mapping phase will consist of up to five subject matter expert volunteers
solicited by the researcher based on their amount of experience solving problems in
reverse engineering software. A typical subject matter expert will have five to seven
years of hands-on experience reverse engineering and/or programming in assembly
language.

The task analysis phase will include up to 25 volunteer subjects from the popula-
tion of people able to solve software reverse engineering problems. The population
will include a mix of DoD contractors, DoD civilians, and active duty military, as
well as potentially personnel with no DoD affiliation (from expected greatest to least
numbers). Many of the reverse engineers will likely be DoD contractors since the DoD
performs a lot of contracted work in software reverse engineering.

For each category, appropriate measures will be taken to ensure that the participants
are able to participate in the study and that their designation does not preclude them
from participating (i.e., that there are no contractual or pending contractual relation-
ships that would create an implied pressure to participate). Also measures will be
taken to work with limits on their participation based on their designation (i.e., that
some civilians might only participate during non-duty time, or that participation is
not commander-directed for active duty, etc.).

Participants will be included by self-identifying their ability to reverse engineer soft-
ware in x86 assembly code. Additionally, lacking the ability to reverse engineer using
IDA Pro and OllyDbg will be used as criteria to exclude them from the study. Factors
such as age, sex, race, organizational affiliation, or job designation outside of this cri-
teria will not be used to exclude or include candidates. The knowledge representation
phase will involve interviews with the subjects and subject matter experts to clarify
and provide additional information about data collected during the first two phases.

3.3. Timeframe: The overall study (not including data analysis) will be conducted
over the period of three months, or until 25 subjects are collected, whichever occurs
sooner. The time for each subject matter expert participant of the concept mapping
phase will be approximately two hours during one scheduled interview. The time
period for the task analysis participant is expected to be approximately 30 minutes
to three hours, depending on the problem solving skill of the participant. After three
hours, the task analysis session will be terminated. The time period for an individual
knowledge representation session is expected to be 30 minutes to one hour.

177

3.4. Data collected: Demographic data will be collected only to outline potential
sources of bias in the research during the analysis of the data. Such information will
be limited to educational background and experience reverse engineering. Contact
information such as name, e-mail address, and phone number will be recorded in or-
der to gather follow-up information about data from the sessions. The contact data
will be separated from the data from the interviews and sessions once the analysis is
completed.

Research data will include audio recordings of each participant’s voice as he or she
thinks aloud through the problem solving portion of the task, and a video recording
of the participant’s screen. A sample questionnaire is attached.

3.5. Risks to Subjects: The risk to participants includes the potential accidental
release of collected data about their background in reverse engineering. Despite mea-
sures taken to protect the subjects’ identity, there is the possibility that the collected
demographic information can be correlated to uniquely identify a participant based
on the sound of their voice. The data should not be able to provide any other pur-
pose besides establishing a person’s skill at solving a reverse engineering problem. If
the participant inadvertently releases personally identifiable data during the recorded
task analysis, it will be sanitized by the researcher.

3.6. Informed consent: All subjects will be self-selected to volunteer to participate in
the interview. No adverse action will be taken against those who choose not to par-
ticipate. Subjects will also be made aware of the nature and purpose of the research,
sponsors of the research, and disposition of the results. A copy of the Privacy Act
Statement of 1974 will be available for their review.

4. If you have any questions about this request, please contact Mr. Adam Bryant
(primary investigator).

//SIGNED//
ROBERT F. MILLS, Ph.D., Associate Professor
Faculty Advisor, AFIT/ENG

//SIGNED//
ADAM R. BRYANT, Civilian
Graduate Student, AFIT/ENG

Attachments:
1. Research description
2. Structured interview outline
3. Task analysis instructions

178

Appendix B. Structured Interview

Study: Understanding Conceptual and Procedural Knowledge in a Reverse
Engineering Task

Investigator: Adam Bryant, AFIT/ENG and AFRL/RYWA
Purpose:
This interview is designed to help better understand the knowledge used in reverse
engineering tasks. For this reason, several questions have been designed to guide this
study and to help elicit the concepts and procedures used in practice. This informa-
tion may be useful to designing better reverse engineering tools, and in understanding
the process of “sensemaking” when a person interprets and characterizes ambiguous
data in reverse engineering.

The results of this study should shed light on what guides people in decisions on
how to reduce information. The study is sponsored by the Air Force Research Labo-
ratory’s Robust Decision Making Strategic Technology Team and is part of a student’s
program of doctoral work at the Air Force Institute of Technology’s Department of
Electrical and Computer Engineering.

Instructions:
This interview will be recorded and is expected to take between one and two hours.

Questions:

Overview and process:
1. Provide an overview of some of the different types of reverse engineering tasks you
perform.
2. Can you identify five authentic problems that an expert should be able to solve if
they have become a master at reverse engineering?
3. Can you break down the reverse engineering task to between 5 and 7 major steps
that you perform in most reverse engineering tasks?
4. What steps tend to vary between the different types of reverse engineering tasks?

Sub-goals:
5. What do you consider your main goals to be when you’re reverse engineering?
6. How do you approach carrying out a plan to achieve your goals?
7. If you have to change your approach mid-task, what signals to you that it’s time
for a different approach?
8. How are your goals in a reverse engineering task different from when you first got
started reverse engineering?

Critical decisions and cues:
9. Describe three to five difficult decisions you’ve had to make in the course of revers-
ing software.

179

10. When do those types of decisions typically appear, or what are the decision cues?
11. How did you decide what the different decision options were?
12. How did you choose between the different options?

Specialized knowledge:
13. Describe a particularly difficult or complex reverse engineering task you’ve per-
formed.
14. What aspects made it difficult?
15. What conceptual knowledge did you need in order to be able to tackle it?
16. What are the skills and abilities that you think separate experts from novices?
17. What conceptual knowledge do you think experts have that novices don’t have?

Specialized tools and equipment:
18. Describe the standard and specialized tools you use in the performance of reverse
engineering, and what abilities they provide?
19. Describe your reverse engineering setup.
20. What are the must-have tools and equipment?
21. What must-have information do the tools provide?
22. What capabilities do these tools and equipment allow you to have?

Automaticity and implicit procedural knowledge:
23. What types of decisions or steps in reverse engineering have become automatic
for you?
24. If you explained the steps to complete a problem to a new reverse engineer, and
the novice had to complete the task based solely on your instructions, where would
he or she likely get hung up?

180

Appendix C. Task Analysis Instructions

Title: “Understanding Conceptual and Procedural Knowledge in a Re-
verse Engineering Task”

Investigator: Adam Bryant, AFIT/ENG and AFRL/RYWA

Purpose:
This task analysis is designed to determine the conceptual and procedural knowledge
that reverse engineers use in solving a simple reverse engineering problem. This infor-
mation is useful to designing better reverse engineering tools, and in understanding
the processes of sensemaking and information-seeking when a person interprets and
characterizes ambiguous data. The results of this study will shed light on how re-
verse engineers use knowledge to reason about their task environment. The study is
sponsored by the Air Force Research Laboratory’s Robust Decision Making Strategic
Technology Team and is part of a student’s program of doctoral work at the Air Force
Institute of Technology’s Department of Electrical and Computer Engineering.

Time Required:
This task analysis should take between 30 minutes and one hour. If you need a break
at any time, please inform the research assistant. If during the task, you feel you are
unable to complete the task data about your experience may still be valuable. At any
time, if you no longer wish to participate in the task analysis for any reason, please
inform the research assistant.

Think-Aloud Protocol:
You should “think aloud” while performing each of the tasks in order to provide
empirical data about your thought processes. Cognitive psychology studies suggest
that thinking aloud does not interfere with the underlying problem- solving thought
processes. Do not attempt to explain your actions to the researcher or assistant, as
explaining your behavior does interfere with your thought processes. For this reason,
try to simply think aloud while performing the tasks. If you should fall silent, the
research assistant will remind you to verbalize while performing the task.

Tasks:
You will be seated at a computer with Windows XP desktop through a virtual ma-
chine (unless otherwise arranged). On the desktop and the task bar, there are links
to the reverse engineering tools. Several sheets of paper are provided for you to take
notes on as you complete the tasks. Since there is variation in the hex editors and
configurations used by different reverse engineers, you will be given as much time as
you need to familiarize yourself with the tools before starting the tasks. You will be
provided a folder with a reverse engineering challenge which you are to complete.

181

Appendix D. Research Description

Research Description
This section describes a cognitive task analysis methodology which is adapted to
systematically understand intuitive cognitive processes in software reverse engineer-
ing. A set of hypotheses are presented to guide the research. Afterwards, empirical
work that will test these research hypotheses is laid out into a detailed research plan.
Finally, preliminary work in determining how reverse engineers use abstract mental
models to solve problems is presented.

Experimental Tasks
The subject will be provided with a binary executable and will be responsible to
modify the program’s control flow so the program’s “Help” menu displays that the
program is “registered.” The subject will then have to identify the process which con-
trols this and modify instructions and register values in order to redirect the control
flow into the desired process. This task represents a simple reverse engineering task
that is often one of the first steps in a reverse engineer’s training. However, the task
requires the reverse engineer to seek information, rely on background knowledge, and
act and interact with the task environment.

Coding Experimental Data
A verbal protocol will be performed to capture data from reverse engineers performing
reverse engineering tasks. The verbal protocol consists of recording audio and screen
captures of reverse engineers working in their own environment (as constraints per-
mit). If the subject does not have or is not able to use their own reverse engineering
environment in the task analysis, a working backup setup will be available consisting
of a Windows XP operating system in a VMWare Workstation running IDA Pro,
OllyDbg, and the HEdit hex editor. If this is the case, the subject will be given time
to become familiar with the system setup.

The subject will be instructed to think aloud while reverse engineering while the
researcher records their voice and the video capture from the computer monitor. The
subject will be instructed only to verbalize, and not to explain their task. Talking
aloud in this fashion during task performance has been found to provide useful clues
that allow researchers to inference sub-goals and retrieval from short and long-term
memory. It has also been found not to significantly interfere with the underlying cog-
nitive processes of many tasks unless the subjects attempt to explain their reasoning
while performing the task. Several pieces of paper will also be provided on which the
subject may make notes, which will be retained to help integrate the model from the
coded empirical data.

From the audio and verbal data, the researcher will analyze each session, analyz-
ing count and frequency of behaviors and concepts that are used. The researcher
will qualitatively interpret sequential data to determine higher-level processes and
functions from the low-level behavior sequences. The researcher will also infer the

182

sub-task structure from the sequence data. The data from the verbal protocol will
be presented back to the interviewee in a post-task interview in order to explain any
gaps and verify inferences made about the sub-task structure.

Content Analysis of Verbal Protocol Data
The reverse engineering task will be independently coded by the researcher and by
one or more assistants with a background in human factors psychology, computer
science, and/or artificial intelligence. The coders will receive advance training from
the researcher in how to properly code human factors studies. The verbal dialog from
the task will be coded to identify concepts, goals and sub-goals, hypotheses, and data
seeking behaviors. In coding the audio the coders will monitor for times where the
subject names references related to one of the following:

• Concepts

• Goals and sub-goals

• Plans

• Hypotheses

• Information seeking

Whenever the coders detect a reference to any of the above, they will write
down the name in the applicable category column. For each time the same concept is
heard after the initial annotation, a tally will be used to indicate the number of times
a concept is invoked. For detecting concepts, the coders will annotate each time a
concept is used in reasoning by listing those objects or entities verbalized as nouns in
reference to and during the task. Ambiguous references such as “this” or “right here”
will be given a temporary placeholder name and later correlated with video to infer
the referred concept.

Goals and plans will be coded by listening for when a subject expresses a desired
state. For instance, when a subject says something like “Now I need to ... ,” “I’m
supposed to ...” or something of the sort, they are expressing a goal. Goals will be
annotated whenever they are explicitly specified, or when they are alluded to as an
effect, such as when the subject describes changing a register value in order to change
control flow. In the previous case, changing control flow would be an effect and the
register values represent a state variable. When a goal is recognized, the coder can
create a text label such as “find window function” and annotate the time. It will
be up to the analysis to integrate the labels from different coders based on the time
stamps. It will also rely on analysis to describe the goals in terms of problem state
attributes.

Hypotheses will be coded by listening for questions or statements that indicate a
guess, such as “Maybe,” “What if,” “It’s possible that,” etc. Each of these hypothe-
ses will be coded by providing a label for the hypothesis and annotating the time.

183

Information-seeking behaviors will be coded by annotating when the subject men-
tions the needed data as part of a question, as in “I need to find when this memory
address changes,” or “Looking for the first time the code calls this function.” It may
also be indicated by descriptions of moving through the spatial environment that the
tools create, such as “Going down to this part,” “Moving over here to this window,”
or “Scrolling back up to see where this value came from.”

Data Analysis
After coding, an integration phase will take place for each subject’s tasks. The tasks
will be correlated on concepts, goals, plans, hypotheses, and information-seeking be-
haviors. The data will be analyzed in order to describe and classify the different types
of conceptual components. The concepts will be separated into concepts representing
things in the environment and concepts representing functions (usually expressed as
verbs). The coded concept data will be analyzed in order to track similarities and dif-
ferences in conceptualization of structure and function between subjects and between
reverse engineering problems for individual subjects. The researcher will describe the
level of abstraction of each concept and will seek to infer observable attributes that
enabled recognition of a concrete instance of a concept.

Goals, sub-goals, and plans will be characterized based on state variables which repre-
sent the goal and the plans made to achieve the goal. The researcher will seek to infer
the state which represents completion of the goal, and the state variables that the sub-
ject uses to track progress toward completion of the goal. The coded audio, and video
data will be integrated to determine and characterize the overall reasoning strategy
for each of the subjects and for each subject in each of the reverse engineering prob-
lems. Similarities and differences will be analyzed in reasoning strategies, clarity and
number of goals and sub-goals, and structure and relationships of goals and sub-goals.

The sequential data will be analyzed to characterize the problem solver’s represen-
tations of state and state variables for each reverse engineering problem. Like the
concept data, it will be compared between subjects and between problems for an in-
dividual subject. Since humans often solve problems in dynamic environments, the
data will be interpreted to describe how state is dynamically formed and used in
reasoning. Static (or always available) state variables will also be characterized and
described. The data between subjects and between reverse engineering problems for
an individual subject will be analyzed to compare similarities and differences in how
state and state variables are used in problem solving in the reverse engineering domain.

Hypotheses and information-seeking behaviors will be characterized by the type of
information sought, and the type of hypothesis. Since in the sense making model,
information-seeking behaviors occur when a subject is trying to establish or restruc-
ture a “frame” or hypotheses, these behaviors will be matched to hypotheses through

184

inference. Information seeking and hypothesis data will be used to infer the structure
of the mental models and describe problem-detection activities of the reverse engi-
neers.

Knowledge Representation
The knowledge representation phase is aimed at capturing and depicting the knowl-
edge in a representation formalism, which can take on either a general description or
a formal description such as first-order logic, production rules, or a meta-model. The
goal of knowledge representation is to provide a description of the reverse engineer’s
knowledge used in the reverse engineering task and to verify this knowledge with the
reverse engineer and possibly the SMEs.

The fully-fleshed out knowledge representation should relate the concepts to one an-
other and express constraints between the relationships. The representation of the
procedural knowledge should be able to express the processes in terms of concepts
and information requirements from the reverse engineering task. It may take the form
of production rules or first-order logic statements, but other representation possibili-
ties will be investigated. The specificity of the knowledge representation will depend
on the specificity and quality of the knowledge extracted and interpreted from the
interviews and verbal protocol.

185

Appendix E. Analysis Scripts

###

Script to analyze coded subject matter expert interview data

@author Adam Bryant

@email adam.bryant@wpafb.af.mil

@date 15 Dec 2011

###

import sys

from numpy import *

import operator

class TextAnalyzer:

def __init__(self):

pass

def analyzeFile(self):

linelist = []

#put strings in sublists

f = open(r’interview1.csv’)

for line in f.readlines():

linelist.append(line.rsplit(’,’))

concepts = {}

for line in linelist:

flip it so phrases are first

line.reverse()

chop the first item out (phrases)

line = line[1:]

for word in line:

if word in concepts.keys():

concepts[word] += 1

else:

concepts[word] = 1

print sorted(concepts.items(),

key=operator.itemgetter(1),

reverse=True)

for line in linelist:

print line

print len(concepts)

def main():

ta = TextAnalyzer()

ta.analyzeFile()

if __name__ == "__main__":

186

sys.exit(main())

###

Script to count words and occurrences from case study data

@author Adam Bryant

@email adam.bryant@wpafb.af.mil

@date 15 Dec 2011

###

#!/usr/bin/env python

import sys # to exit the program: sys.exit(0)

def main():

try: # open the files for writing and reading

inText = open("input.csv", "r")

outText = open("output.txt", "w")

raw = inText.read()

except IOError:

print ’Cannot open file %s for reading’ % inText

sys.exit(0)

dataList = raw.split("\n") # break into lines

strippedDict = dict()

wordDict = dict()

entryDict = dict()

for line in dataList: # put lines into list

category = line.rstrip(",") # pull comma off the end

word = category.split(",")[0]

category = category.split(",")[1] # break into two

strippedDict[category] = strippedDict.get(category, 0) + 1

wordDict[word] = wordDict.get(word, 0) + 1

entryDict[line] = entryDict.get(line, 0) + 1

tempList = strippedDict.items()

tempList2 = wordDict.items()

tempList3 = entryDict.items()

sortedList = sorted(tempList, key=lambda x: x[1],

187

reverse = True)

sortedWords = sorted(tempList2, key = lambda x: x[1],

reverse = True)

sortedEntry = sorted(tempList3, key = lambda x: x[1],

reverse = True)

Write the words from the list to an output file

try:

outText.write("Frequency of Concept Categories:

(total categories:")

outText.write(str(len(sortedList)))

outText.write(")\n")

for entry in sortedList:

outText.write(str(entry))

outText.write("\n")

for i in range(0, 10):

outText.write("\n")

outText.write("Frequency of Concepts: (total concepts:")

outText.write(str(len(sortedWords)))

outText.write(")\n")

for entry in sortedWords:

outText.write(str(entry))

outText.write("\n")

for i in range(0, 10):

outText.write("\n")

outText.write("Frequency of Concept, Category Pairs:

(total pairs:")

outText.write(str(len(sortedEntry)))

outText.write(")\n")

for entry in sortedEntry:

outText.write(str(entry))

outText.write("\n")

print "completed writing to output file"

except IOError:

print "Cannot write to file %s" % outText

outText.close()

if __name__ == ’__main__’:

main()

188

Appendix F. Coded Verbal Data from Case Study

Segment D G S H I
1 okay 1
2 let’s do Splish.exe 1
3 it’s loaded into memory 1
4 these arguments are nice 1
5 this is the new OllyDbg 1
6 okay 1
7 I’m going to... 1
8 what am I doing? 1
9 let’s just play it and see what happens 1
10 f9 1
11 splash screen 1
12 Splish splash 1
13 check hardcoded 1
14 name and serial check 1
15 enter serial number 1
16 that closes it 1
17 your mission is to disable the splash screen 1
18 name and hardcoded serial 1
19 and keygen the name serial part 1
20 see what’s going on the program 1
21 three very basic and easy protections 1
22 see you in the next level 1
23 Crudd 1
24 okay so 1
25 check hardcoded 1
26 sorry please try again 1
27 okay so 1 1
28 it doesn’t tab over 1
29 test me 1
30 sorry please try again 1

189

Segment D G S H I
31 alright 1
32 sooooo... 1
33 let’s close this and back up to the very start 1
34 and see what it’s doing 1
35 start stepping in f9 1 1
36 that ’s the start of the program 1 1
37 that’s an intermodular call 1 1
38 follow that 1
39 just a little jump 1
40 system metrics 1 1
41 intermodular call 1 1
42 okay 1
43 wonder what that pushes in 1
44 pushes the base pointer on the stack 1
45 call 1
46 it’s another one 1
47 function 1
48 leave 1
49 return 1
50 push 1
51 call 1
52 jump here 1
53 splash class 1
54 bitmap 1
55 it’s pushing something in memory 1
56 it’s gonna have a picture 1
57 in the resources somewhere 1
58 a pattern brush 1
59 it’s gonna paint the bitmap 1
60 pattern brush 1
61 window’s next 1
62 a window 1
63 upppp 1
64 what happened? 1
65 that must be a call here 1
66 401546 1
67 a call to show window 1
68 yeah of course 1
69 f9 to get there again 1
70 so that’s a jump to it 1

190

Segment D G S H I
71 I need to patch that jump somehow 1
72 show window 1
73 I need to have that serious 1
74 it’s gonna tick once 1
75 it’s telling me SendMessageA 1
76 I guess that’s the message 1
77 1
78 I could jump around it completely 1
79 I cold just patch a jump right here 1
80 401... 401583 1
81 and then just miss all this stuff 1
82 I could make the tick count zero that’s really fast 1
83 I could just nop the whole thing 1
84 that’s really messy I wonder if it would screw

up the rest of the code 1
85 I’ll just jump it 1
86 it’s really quick
87 jmp 1
88 401588 1
89 should be 74 or 75 1
90 upp 48. 1
91 there we go 1
92 let’s rewind it 1
93 and play 1
94 oop my stuff isn’t there anymore 1
95 must not have saved 1
96 loaded from the backup 1
97 do that again 1
98 set a breakpoint here 1
99 upp.. 1
100 the breakpoints stay but the other crap doesn’t 1
101 set a breakpoint here 1
102 let’s reload it from memory 1
103 jump again 1
104 401583 1
105 pshhhw 1
106 let’s f8 it 1
107 bong 1
108 okay 1
109 should just be able to 1
110 OurWindow 1

191

Segment D G S H I
111 looks like my first win32 program 1
112 CreateWindowExA 1
113 that must be the other 1
114 ShowWindow 1
115 okay this is the message loop 1
116 all that code in win32 just does that 1
117 it’s pretty sad 1
118 there we go 1
119 there’s the message loop 1
120 so to get out of the message it’s 401 1
121 I’m gonna remember this 1
122 translate message 1
123 get message 1
124 gets the message 401544 1
125 (type) 1
126 window 1
127 save as stuffs 1
128 okay 1
129 so 1
130 (scroll up) 1
131 if I rewind it it’s gonna break that 1
132 so let’s patch that jump again 1
133 (patch that jump) 1
134 lets do this in a hex editor 1
135 HexD 1
136 so I’ve got to find it first 1
137 open it up 1
138 desktop 1 1
139 crackmes 1 1
140 Splish 1 1
141 can’t search for address 1
142 search for this string 1 1
143 control f to find that string 1 1
144 not a string it’s a hex value 1
145 a31132400 1
146 alright looks like it 1
147 right after that it’s four things then 1
148 ff35113240 1
149 so these are the ones I need to change right here 1
150 so changing this 1

192

Segment D G S H I
151 write access 1
152 up 1
153 so 1
154 it’s still open in memory so it must have a memory

lock or something 1
155 close this 1
156 now let’s try 1
157 aw crap 1
158 (err) 1
159 now I got to close this one first and I can close

the other one 1
160 OllyDbg 1 1
161 alright open 1
162 where is it 1
163 I don’t need to open that one 1
164 close that one 1
165 close yes 1 1
166 close the process 1
167 Splish splash 1
168 now in the other one 1
169 open 1 1
170 Splish 1
171 copy this out just in case 1
172 (type) 1
173 then I’ll run a patch after that 1
174 like e4 or something 1
175 close this cos I’m stupid and I forgot 1
176 Splish 1 1
177 debug 1 1
178 open 1 1
179 f7 to it 1
180 don’t want to f7 through there 1
181 just intermods 1 1
182 until I see 1 1
183 right here it is 1 1
184 oh I had the breakpoint set still 1
185 CreateWindow 1
186 so you push 1 1
187 I wanna change the push 1 to jump 1
188 (type) 1
189 I guess I can do this by bytes why it was only

two bytes earlier 1
190 just a short jump 1

193

Segment D G S H I
191 401583 1
192 so 1
193 jump short jmp 43 1
194 so it’s like 43 bytes or something 1
195 eb 43 1
196 change to eb 43 1
197 um 1
198 what am I doing 1
199 this 1
200 close that up 1
201 open my handy dandy hex editor 1
202 Splishy Splishy 1
203 control f 1 1
204 did it save it? 1
205 good thing I saved it cause I didn’t remember 1
206 401066 1
207 eb 43 1
208 save that 1
209 save it under a different name 1
210 because that would be bad 1
211 splsih no splash 1
212 uh try this 1
213 yep 1
214 runs with no splash screen 1
215 find hardcoded serial and keygen name serial part 1
216 find serial 1
217 serial number is... 1
218 let’s open the debugger 1
219 open says me 1
220 Splish Splish splash 1
221 I got to find the 1
222 401544 1
223 so it’s control b 1
224 401445 is that what I want 1 1
225 um close 1
226 40154 so this is the get message window 1 1
227 (scroll) 1
228 so there’s a serial number there somewhere 1
229 the serial number’s actually gonna be in

memory somewhere 1
230 unless it’s actually constructed dynamically 1

194

Segment D G S H I
231 so that’s the goodboy message 1 1
232 403043 1
233 so lets find a reference to that 1
234 that 403143 1 1
235 nope 1 1
236 up 1
237 (scroll) 1
238 there’s a strings thing somewhere 1 1
239 you can see all the breakpoints 1
240 ump 1
241 (look for) 1
242 trace 1
243 step into? 1
244 mmm 1
245 help about 1
246 there used to be a thing where you could see the

text strings 1
247 I haven’t done that in so long 1
248 this is all the resource stuff 1 1
249 (look at memory) 1
250 let’s find the thing in the window 1
251 ah let’s do it 1
252 set a breakpoint here 1
253 clear this other one 1
254 so it’s waiting for a message 1
255 I should leave that out for when it translates ti 1
256 I want when it gets the message 1
257 what’s it do wth the message 1
258 I don’t even know 1
259 so if iet has 1
260 or eax eax 1
261 so if it has any message at all it’s gonna break

out here 1
262 it is hardcoded 1
263 nasty 1
264 check hardcoded 1
265 oh 1
266 that didn’t go where I wanted to go 1
267 get message 1
268 it didn’t jump out of there at all 1
269 um 1
270 so lets breakpoint somewhere up here 1

195

Segment D G S H I
271 okay f8 1
272 now I need to 1
273 I need to do over here 1
274 let’s play it again 1
275 nasty 1
276 check hardcoded is gonna jump right 1
277 um so where is it in memory 1
278 I don’t want to search for strings cause it’s stupid 1
279 where’s that freaking message go 1
280 does it hit this one at all 1
281 let’s try it see if I can 1
282 upm 1
283 it does hit it 1
284 see if it’s equal 1
285 it’s not equal 1
286 so this one will keep going 1
287 jump 1
288 short 1
289 so if I put something in eax like nothing 1
290 it wil jump out 1
291 returns 1
292 op.. 1
293 that’s not good 1
294 that just killed it 1
295 let’s just do this without killing it 1
296 I’m dumb 1
297 alright 1
298 I need to go to 1
299 translate message 1
300 I need to let it call this 1
301 so now it’s doing a nothing message 1
302 I need to jump in here 1
303 f7 1
304 dispatch message 1
305 alright so here’s the goodboy message 1
306 I just happened to see it 1
307 good job now keygen it 1
308 back to this function 1
309 to get here 1
310 to get the goodboy it needs to get to this jump 1

196

Segment D G S H I
311 so this comparison needs to work out 1
312 403643 1
313 so it’s a loop so more in that 1
314 follow in the dump 1
315 more address 1
316 mmm 1
317 memory address 1
318 I’ll set a breakpoint 1
319 rewind it 1
320 play it up 1
321 hardcode 1
322 nasty nasty 1
323 check 1
324 okay so that’s not where I thought it was 1
325 it didn’t even stop on that breakpoint 1
326 I wonder if it’s a fake umm 1
327 name and serial number 1
328 so here’s the message box a 1
329 jump short 1
330 no 1
331 so I need to get the name and serial 1
332 pass that one 1
333 create window create window 1
334 should see a GetDialogItemText or something 1
335 translate message 1
336 there’s a resource thing 1
337 it’s a small program so I can just like look through it 1
338 window text 1
339 Splish splash 1
340 please enter your name 1
341 so 1
342 so that’s not it 1
343 say sorry please try again 1
344 wish I could do that and then back it up 1
345 so these are two separate bad boy messages 1
346 alright I found the serial first 1
347 so there’s the stuff that I had 1
348 scroll through memory 1 1
349 do I see anything? 1
350 well 1

197

Segment D G S H I
351 find references 1
352 I forgot about that 1
353 let’s find references to this 1
354 push offset 1
355 im pushing this memory thing 1
356 so which one comes first 1
357 okay 1
358 so try that 1
359 oh you gotta be kidding me 1
360 it’s just hardcoded 1
361 I found the hardcoded serial it’s just hardcoded 1
362 I forgot about that 1
363 these are always so stupid 1
364 I figured these out and forgot em 1
365 hardcoded it’s a hardcoded serial 1
366 I need to figure it out 1
367 there’s an algorithm behind this 1
368 enter name 1
369 Adam 1
370 and 1
371 deadbeef 1
372 okay so please try again 1
373 so this is where the comparison is 1
374 so I’ll just catch this 1
375 lets try that 1
376 let’s back it up 1
377 this is the badboy message 1 1 1
378 it is at jump is not equal 1 1
379 there’s a comparison with eax and ecx 1 1
380 I wish I could jump back there 1
381 that’s what I really want 1
382 if that will take me there 1
383 if not 1
384 this is the good boy message 1
385 if ebx is the same as 403563 1
386 what is that 1
387 uh 1
388 references to address constant 1 1
389 ex 403403 1
390 ebx will have this point 1

198

Segment D G S H I
391 edx will have the thing that’s supposed to

be in memory 1
392 how’s this thing star 1
393 I need to watch it here 1
394 cdq 1
395 idiv here 1
396 I need to look that up 1
397 cdq a loop 1
398 xor 1
399 add edx 1
400 compare do and oa 1
401 so that’s 10 1
402 0a is 10 1 1
403 so compare da 1
404 alright I gotta see this going through 1
405 I can’t do that 1
406 it would be awesome if I could 1
407 let’s do adam and deadbeef again 1
408 deadbeef 1
409 it jsut loaded 1
410 this 1
411 okay so 1
412 (27:35) 1
413 so I just found that 65 1
414 it’s um 1
415 in memory 1
416 41 b 1
417 edx = 0 1
418 this loop stuff is pretty neet 1
419 checking to see if it’s decimal 10 1 1
420 xor 1
421 edx and ebx 1
422 so it’s 1
423 eax equals 1
424 the thing pointed to be ebx 1
425 what was that? 1
426 ecx is 10 1 1
427 ecx is 1
428 10 1 1
429 eax equals 1
430 mmm 1

199

Segment D G S H I
431 pointer to ebx 1 1
432 plus esi 1
433 um 1
434 gonna tries to divide 1
435 it’s the start of a loop or something 1
436 alright ecx 1
437 probably 10 1 1
438 step over 1
439 add edx into 1
440 edx equals edx plus 2 1
441 so edx equals 1
442 edx is gonna get ecx 1
443 edx = remainder of 1
444 so that will be mod 1
445 ecx mod ecx 1
446 I don’t know 1
447 smething like that 1
448 I know the idea is to divide ecx 1
449 xor’s ecx 1
450 edx = edx xor fn edx 1
451 edx and edx 1
452 that’s cancel 1
453 add edx and 2 1
454 this is more like lisp 1
455 edx equals 1
456 edx plus 2 1
457 compare 1
458 if umm 1
459 edx 1
460 equals 1
461 10 1 1
462 this is 1
463 jump to this part 1
464 otherwise 1
465 if edx low does not equal 10 then 1
466 edx = edx minus 10 1
467 so it can equal 10 1
468 we’re gonna put 1
469 eal into that thing 1
470 so that thing 1

200

Segment D G S H I
471 10 1
472 so whatever that thing was 1
473 okay 1
474 jump short 1
475 where was i 1
476 so it’s gonna compare 1
477 ... 1
478 ebx plus 1 1
479 eax plus plus 1
480 it will compare if ebx is equal to 1
481 that value 40346 1
482 403 1
483 ... 1
484 ... 1
485 ... 1
486 4034 1
487 6.. 3 1
488 says 4 1
489 ... 1
490 ebx = 4 1
491 ... 1
492 so that’s the same temp 1
493 let’s call it temp2 1
494 not foo I hate foo 1
495 ... 1
496 let’s call it a number 1
497 eax = that number 1
498 and then 1
499 jump is not equal 1
500 so this is one 1
501 and back to the start 1
502 actually no it goes back to this 1
503 ohh 1
504 eax 1
505 kay 1
506 feels like a loop 1
507 so 1
508 um once it comes out 1
509 it looks like do while 1
510 do 1

201

Segment D G S H I
511 ... 1
512 while 1
513 ebx = 1
514 that value 1
515 okay 1
516 and then once that fails to be true it will

xor these things 1
517 so ebx = 0 1
518 ecx = 0 1
519 edx = 0 1
520 oops
521 so what’s that again 1
522 this is processing the initial thing 1
523 so the e 1
524 plus 10 1
525 ecx plus 10 1
526 ... 1
527 ... 1
528 um 1
529 ... 1
530 ... 1
531 edI = 1
532 403240 1
533 403 1
534 2 1
535 ... 1
536 40324 1
537 ... 1
538 som 1
539 this is d 1
540 so that’s gonna be nothing 1
541 ... 1
542 pop 1
543 ... 1
544 yeah that’s nothing 1
545 so increment 1
546 alright so 1
547 ecx = 10 1
548 ... 1
549 ... 1
550 temp = eax = temp 1

202

Segment D G S H I
551 whatever that temp value is 1
552 cdq 1
553 doing that thing to memory 1
554 see how it changes 1
555 alright it’s an 8 1
556 what could I do to ecx to 10 that would

make it have an 8 1 1
557 oh a 6 and an 8 1
558 so eax got a 6 and edx got an 8 1
559 what’s it divided by? 1
560 maybe eax 1
561 I don’t know what was in eax 1
562 can I minus back? 1
563 ohhh I can’t do that 1
564 ecx = eax 1
565 ... 1
566 ... 1
567 eax divided by eax mod ecx 1
568 then eax = eax divided by ecx 1
569 would that work out 1
570 so how many times does 1
571 oh crap I don’t remember here bef 1
572 re so play again 1
573 oh serial check 1
574 okay 1
575 I need to stop right there 1
576 deadbeef 1
577 I did ecx 1
578 okay so I had 41 1
579 41 in eax 1
580 and a in ecx 1
581 yeah so that has to be like 1
582 that’s gonna be like 1
583 eax = eax divided by ecx 1
584 so ecx was 1
585 so that’s probably right 1
586 then let’s see what ecx was 1
587 eax mod ecx 1
588 so this is getting better 1
589 lets go to the next one 1
590 same thing 1

203

Segment D G S H I
591 f8 f8 f8 f8 1
592 I’ve got 44 in here 1
593 that looks important 1
594 okay 1
595 I divide 1
596 step over 1
597 we’ve got stuff into 1
598 memory 1
599 ... 1
600 ... 1
601 ebx increment 1
602 were progressing through our loop 1
603 see if ebx is equal tot hat area of memory 1
604 40367 1
605 4034 1
606 6 1
607 7 1
608 8 1
609 so that’s the 8 that got pushed in 1
610 so ebx = to 1
611 ... 1
612 I’m an idiot 1
613 I can’t do this math 1
614 ebx equals 1
615 43476 1
616 so what would that be equivalent to a

programming language 1
617 ebx = . 1
618 forgot about that 1
619 before that was temp equals 1
620 ebx 1
621 do 1
622 sooo 1
623 not any check on this time like in the other one 1
624 temp is
625 compare ebx to dword pointer 1
626 if ebx 1
627 ... 1
628 ebx 1
629 ebx = 1
630 403467 1

204

Segment D G S H I
631 is the hardcoded address 1
632 does not equal 1
633 ... 1
634 there’s a data section 1
635 it’s loaded somewhere 1
636 it’s an offset 1
637 jump back here 1
638 eax = whatever 1
639 doooo 1
640 ... 1
641 ... 1
642 ... 1
643 let’s do while 1
644 ... 1
645 now this jumps to 1
646 somethings going on 1
647 it has to jump out of here 1
648 okay 1
649 uh 1
650 ... 1
651 ... 1
652 ... 1
653 was I looking at the wrong thing 1
654 a zero name? 1
655 ... 1
656 oh this is if I don’t have a name 1
657 ... 1
658 alright 1
659 to get here 1
660 we need to get here. 1
661 and to get here 1
662 we need to get here 1
663 these should be equal 1
664 ... 1
665 xor ebx ebx 1
666 ... 1
667 compare ebx 1
668 to 4063 1
669 so this transforms 1
670 this use to be the serial 1

205

Segment D G S H I
671 this is what’s done to the name 1
672 it seems straightforward to put this in 1
673 I’m not going to do it because I don’t have

programming tools installed here 1
674 so far it makes sense 1
675 where the 42 and 44 come from 1
676 I’m not sure 1
677 that concludes my CamStudio 1
678 have a great day. 1
679 (end of transcript) 1

123 143 278 122 52

206

Appendix G. SME Responses

Participant,Category,Response

SME4,ANALOGY,Build a picture of the functions and how they manipulate

data

SME4,ANALOGY,Puzzle

SME3,ANALOGY,Puzzle

SME3,ANALOGY,Put together a picture

SME2,ANALOGY,Like a dark art

SME2,ANALOGY,Creative or out of the box thinking

SME1,APPROACH,Approach depends on the domain

SME3,APPROACH,Approach depends on the domain

SME4,APPROACH,Approach depends on the domain

SME1,APPROACH,Approach depends on current assumptions which depend on

domain

SME3,APPROACH,Approach depends on current assumptions which depend on

domain

SME1,APPROACH,Get general properties of the binary

SME3,APPROACH,Get general properties of the binary

SME2,APPROACH,Get general properties of the binary

SME4,APPROACH,Get general properties of the binary

SME1,APPROACH,Some assumptions always hold (PE and import and export

directories)

SME1,APPROACH,Finding how program uses system interface / API

SME3,APPROACH,Find how the program uses the system API

SME3,APPROACH,Construct complete picture of the program

SME3,APPROACH,Determine what program is doing

SME1,APPROACH,Examine the instruction-level information

SME1,APPROACH,Examine the function-level information

SME1,APPROACH,Hooking API calls to abstract sequences of system calls

SME1,APPROACH,Simplifying instruction sequences from obfuscated ones

SME4,APPROACH,With malware Static analysis

SME4,APPROACH,Get everything into IDAPro

SME4,APPROACH,Look at structural issues

SME4,APPROACH,Find the entry point of the program

SME4,APPROACH,Assembly only don’t trust decompiler enough

SME4,APPROACH,Read Man pages or API documentation to see how functions

are made

SME4,APPROACH,Infer and label data type information

SME4,APPROACH,Figure out how data is used in the program in functions

SME4,APPROACH,Abstract assembly into mental picture of C code

SME4,APPROACH,For malware learn how it manipulates files

SME4,APPROACH,For malware how does it communicate on the network

SME4,APPROACH,With malware analyzing program for generating signatures

207

SME4,APPROACH,With malware find registry keys used to find on the network

SME4,APPROACH,With malware find files it leaves behind

SME4,APPROACH,With malware understand behavior of program

SME4,APPROACH,Write a decoder to decrypt encrypted traffic to learn what

is exfiltrated

SME4,APPROACH,With protected or malware recover instructions

SME4,APPROACH,With malware (or unknown) static analysis

SME4,APPROACH,Log API and library calls

SME4,APPROACH,Identify obfuscator

SME4,APPROACH,Get around the protection

SME4,APPROACH,Work more quickly if possible

SME4,APPROACH,Recover instructions

SME4,APPROACH,Write tools to defeat protections

SME4,APPROACH,Get past obfuscations as quickly as possible

SME4,APPROACH,For obfuscated understand obfuscator so you can understand

the binary

SME4,APPROACH,Avoid fighting with anti-debugging techniques

SME4,APPROACH,Automate analysis process

SME4,APPROACH,Automate difficult tasks

SME5,APPROACH,Resolve IDA warnings by laying out the different options

SME5,APPROACH,Managing personal knowledge

SME5,APPROACH,Reverse engineering involves troubleshooting

SME5,APPROACH,How much time you have left influences the approaches you

take

SME5,APPROACH,Hypothesis is based on your idea of why you’re looking at

something

SME5,APPROACH,Domain knowledge focuses the approach

SME5,APPROACH,Develop and work from a hypothesis

SME5,APPROACH,Analyze attack surface

SME5,APPROACH,Determine what the program is doing

SME5,APPROACH,Determine how the program is doing what it does

SME5,APPROACH,Depends on the goals

SME5,APPROACH,Automate tasks so they are faster next time

SME5,APPROACH,Watch what malware does

SME5,APPROACH,Automating repetitive tasks

SME2,APROACH,Approach depends on the domain

SME1,CUES,Is program obfuscated

SME1,CUES,Does program have antidebugging

SME1,CUES,If it has antidebugging do I need to be stealthy?

SME1,CUES,Is the program packed?

SME1,CUES,function information includes (win32 API info internal win32

functions symbol information)

SME1,CUES,program output information is from functional information

208

SME1,CUES,Program’s use of interface tells you about the behavior of

the program

SME1,CUES,Program’s local code tells you about algorithms in the

program

SME3,CUES,When many things look unusual it might mean the program is

malware

SME4,CUES,Is code in the right places

SME4,CUES,Are sections named by standard compiler naming schemes

SME4,CUES,Does address layout match standard compiler layouts

SME4,CUES,Are entry points in usual places

SME4,CUES,Does binary import enough functions

SME4,CUES,If binary doesn’t import many functions it doesn’t do much or

imports dynamicaly

SME4,CUES,Does IDA produce warnings

SME4,CUES,Does IDA think functions are well formed?

SME4,CUES,Can IDA identify the compiler?

SME4,CUES,If not obfuscated skip boilerplate compiler code step through

from winmain or dllmain

SME4,CUES,If obfuscated step from entry points

SME4,CUES,Network functions it performs tells you how it communicates

SME4,CUES,With malware can it download files

SME4,CUES,With malware can it upload files

SME4,CUES,With malware can it encrypt communications

SME5,CUES,Are there vulnerabilities here that I know how to exploit?

SME5,CUES,When hypothesis changes approach changes

SME5,CUES,With vunerabilities if code doesn’t touch attack surface

ignore it

SME5,CUES,If it’s not trusted consider it malware

SME5,CUES,If malicious don’t run on the network

SME5,CUES,Is the provenance of the software known?

SME5,CUES,Is the company trusted?

SME5,CUES,Is the software trusted?

SME5,CUES,Does the code look malicious in nature?

SME5,DECISION,Determining if a program has a vulnerability

SME5,DECISION,What patches will be easiest to exploit?

SME4,CUES,The type of file informs your choice of tools

SME4,CUES,Does the binary look well formed or not?

SME1,DECISION,Whether to re-write the software or not (time to reverse)

SME1,DECISION,how to approach

SME1,DECISION,In vulnerabilities whether to keep analyzing or choose a

different target

SME1,DOMAIN,What does the malware do?

SME1,DOMAIN,Are there vulnerabilities?

209

SME1,DOMAIN,With malware are there backdoors in the software?

SME1,DOMAIN,Vulnerability analysis

SME1,DOMAIN,What program does

SME1,DOMAIN,How program talks to system

SME2,DOMAIN,Hardware reverse engineering software reverse engineering

SME1,DOMAIN,Software protections

SME2,DOMAIN,Software protections

SME3,DOMAIN,Software protections

SME2,DOMAIN,Understanding unprotected applications

SME3,DOMAIN,In software protections understanding packers

SME3,DOMAIN,In software protections understanding anti-exploitation

protections

SME3,DOMAIN,In software protections understanding how protections are

implemented

SME3,DOMAIN,In unprotected how to interface with binary

SME2,DOMAIN,What does malware do?

SME2,DOMAIN,Are there vulnerabilities?

SME3,DOMAIN,Are there vulnerabilities?

SME2,DOMAIN,With malware are ther backdoors in the software?

SME5,DOMAIN,Web and application vulnerabilities

SME5,DOMAIN,System-level vulnerabilities

SME5,DOMAIN,Penetration testing

SME5,DOMAIN,Exploitation

SME5,DOMAIN,Viruses are not necessarily malware

SME5,DOMAIN,Malware implies intent

SME5,DOMAIN,MIPS

SME5,DOMAIN,ARM

SME5,DOMAIN,Windows

SME5,DOMAIN,Linux

SME5,DOMAIN,x86

SME5,DOMAIN,Hardware

SME5,DOMAIN,Software

SME5,DOMAIN,Firmware

SME4,GOAL,Get a picture of communications taking place

SME4,GOAL,Depends on stakeholder requirements

SME4,GOAL,Formal write up

SME4,GOAL,Signatures

SME4,GOAL,Well-documented IDA database

SME4,GOAL,Reverse engineer quickly

SME5,GOAL,Educate programmers on how not to introduce vulnerabilities

SME5,GOAL,Exploiting a vulnerability

SME5,GOAL,Understanding nuances about a target since they might be

useful

210

SME5,GOAL,Getting information about a program

SME5,GOAL,Sometimes the goal is getting into a system

SME5,GOAL,Have attack and defensive goal for analysis

SME1,GOAL,Find the purpose

SME1,GOAL,Depends on what domain you are working in

SME1,GOAL,Determine the relevant and important properties you want to

find about the program

SME2,GOAL,Goals depend on the domain you’re working in

SME2,GOAL,Finish the task as quickly as possible (reverse engineering

is expensive)

SME3,GOAL,Determine what stakeholders are interested in

SME3,GOAL,Finish the task as quickly as possible

SME5,GOAL,Determine vulnerabilities

SME5,GOAL,Patch vulnerabilities

SME5,GOAL,Exploit development

SME2,KNOWLEDGE,Assembly language

SME2,KNOWLEDGE,How machine code works

SME1,KNOWLEDGE,Assembly language

SME1,KNOWLEDGE,Machine code

SME1,KNOWLEDGE,Have to know the API like the Win32 system interface

SME1,KNOWLEDGE,Have to know how memory is laid out (in a function and

generally)

SME1,KNOWLEDGE,Domain specific knowledge (Instruction executing I/O

instructions data types how program loader works)

SME1,KNOWLEDGE,how synchronization works in a program

SME1,KNOWLEDGE,how antidebugging tricks work

SME1,KNOWLEDGE,Exception handling is an antidebugging trick

SME2,KNOWLEDGE,understanding how hardware works

SME2,KNOWLEDGE,For protections) includes how protections works

SME2,KNOWLEDGE,For protections) includes how to get around protections

SME2,KNOWLEDGE,for protections) how obfuscations work

SME2,KNOWLEDGE,In vulnerability analysis don’t need to understand

protections

SME2,KNOWLEDGE,With malware understand some level of protections

SME2,KNOWLEDGE,With protections understand antidebugging and packing

SME2,KNOWLEDGE,With malware understand vulnerabilities and exploits

SME4,KNOWLEDGE,How TLS callbacks work

SME4,KNOWLEDGE,API functions

SME4,KNOWLEDGE,Assembly language

SME4,KNOWLEDGE,With malware Windows API calls

SME4,KNOWLEDGE,Network communications and I/O system calls

SME4,KNOWLEDGE,Manual function name resolution

SME4,KNOWLEDGE,Cryptography

211

SME4,KNOWLEDGE,Knowing how to track data flow

SME4,KNOWLEDGE,Knowing what IDA warnings mean

SME4,KNOWLEDGE,C++

SME4,KNOWLEDGE,How compilers generate code

SME5,KNOWLEDGE,Knowing how to explain what you are looking for

SME5,KNOWLEDGE,There are problem domain (sys admin embedded etc.)

aspects of knowledge as well

SME5,KNOWLEDGE,Large learning curve with reverse engineering

SME5,KNOWLEDGE,Understanding different vulnerabilitites

SME5,KNOWLEDGE,Knowing how to leverage data flow to exploit a program

SME5,KNOWLEDGE,Knowledge of exploits gained by writing them

SME5,KNOWLEDGE,Knowledge of vulnerabilities gained by implementing them

SME5,KNOWLEDGE,Knowledge is domain specific

SME4,SKILLS,How to reconstruct an import table

SME4,SKILLS,How to annotate analysis work better

SME5,SKILLS,Learning things you wouldn’t otherwise care about

SME1,SKILLS,Getting around protections

SME2,SKILLS,Getting around protections

SME3,SKILLS,Getting around protections

SME1,SKILLS,Writing reverse engineering tools (loader disassembler

assembler compiler)

SME2,SKILLS,Writing reverse engineering tools (loader disassembler

assembler compiler)

SME3,SKILLS,Writing reverse engineering tools (loader disassembler

assembler compiler)

SME1,SKILLS,Automating workflow processes

SME2,SKILLS,Automating workflow processes

SME3,SKILLS,Automating workflow processes

SME4,SKILLS,Developing reverse engineering tools

SME1,STEPS,Depends on the domain

SME2,STEPS,Depends on the domain

SME1,STEPS,for protected programs and malware first get access to

instructions you are interested in

SME3,STEPS,Understand structure of any overlays

SME2,STEPS,for protected programs and malware get access to

instructions

SME3,STEPS,for protected programs and malware get access to

instructions

SME1,STEPS,Make abstractions from function information

SME3,STEPS,Make abstractions from function information

SME1,STEPS,Apply relations (between instructions and between blocks

and calls between functions and between instructions and data areas)

SME1,STEPS,With vulnerabilities where the input handling code is

212

SME1,STEPS,With vulnerabilities how to craft the input to exploit the

vulnerability

SME1,STEPS,With malware what the program’s output is

SME1,STEPS,With malware what are the vulnerabilities

SME3,STEPS,With malware static analysis

SME3,STEPS,Label instructions

SME1,STEPS,Fix up references

SME3,STEPS,Fix up references

SME1,STEPS,Label data

SME3,STEPS,Label data members

SME1,STEPS,Label functions

SME1,STEPS,Get around protections

SME2,STEPS,Get around protections

SME3,STEPS,Get around protections

SME4,STEPS,File identification is the first step

SME4,STEPS,Get properties of the program

SME4,STEPS,With malware get the code embedded in malicious documents

SME4,STEPS,Identifying the right tool for the job

SME4,STEPS,Walk through the binary

SME4,STEPS,Abstract into properties of functions

SME4,STEPS,Naming functions to help paint a picture

SME4,STEPS,Abstract into something you can give a meaningful name to

SME5,STEPS,Determine the goal

SME5,STEPS,Learn how to get past protections

SME5,STEPS,Get past protections

SME1,TACIT,Recognizing higher-level code constructs in assembly code

(struct array object class functions for loop counter while loop

switch statement)

SME2,TACIT,With experience comes speed

SME2,TACIT,Knowing which paths are fruitful and which aren’t

SME2,TACIT,Recognizing when you’re going down the wrong path

SME2,TACIT,Coming up with creative / out of the box approaches to

challenging problems

SME3,TACIT,Recognizing when things don’t look right in the program

SME3,TACIT,Recognizing compiler optimizations from anomalies

SME4,TACIT,Recognizing meaning of system calls in context

SME4,TACIT,Recognition of crypto algorithms

SME4,TACIT,Recognizing when import function names are being resolved

SME4,TACIT,Knowing when to trust IDAPro

SME4,TACIT,Understanding when something looks wrong with a function

SME5,TACIT,Knowing whether there might be a vulnerability by looking

at the code

SME5,TACIT,Experience allows you to focus on your goal

213

SME1,TOOLS,My particular custom tool

SME2,TOOLS,My particular custom tool

SME3,TOOLS,My particular custom tool

SME4,TOOLS,My particular custom tool

SME2,TOOLS,Disassembler

SME2,TOOLS,Debugger

SME2,TOOLS,Instrumentation tools (to gather information)

SME1,TOOLS,OllyDbg

SME3,TOOLS,OllyDbg

SME1,TOOLS,IDAPro

SME2,TOOLS,IDAPro

SME3,TOOLS,IDAPro

SME1,TOOLS,Immunity

SME1,TOOLS,Windbg

SME2,TOOLS,Windbg

SME1,TOOLS,CFFExplorer

SME1,TOOLS,LordPE

SME2,TOOLS,LordPE

SME1,TOOLS,Custom special purpose tools

SME1,TOOLS,Custom scripts to solve specific tasks

SME1,TOOLS,PELib

SME1,TOOLS,for malware ImpREC

SME1,TOOLS,PEID

SME1,TOOLS,HexRays decompiler

SME3,TOOLS,HexRays decompiler

SME1,TOOLS,Bindff

SME1,TOOLS,Codesurfer

SME1,TOOLS,Patchdiff

SME1,TOOLS,Binnavi

SME1,TOOLS,Responder

SME1,TOOLS,Universal Import Fixer (UIF)

SME3,TOOLS,Run-time debugging

SME3,TOOLS,Stack parsing while program runs

SME3,TOOLS,PEExplorer

SME4,TOOLS,Hex editor

SME4,TOOLS,Imprec

SME4,TOOLS,IDA

SME4,TOOLS,Debugger

SME4,TOOLS,Emulator

SME4,TOOLS,Hex

SME4,TOOLS,Documentation (PE ELF PDF structures MSDN man pages

Google)

SME4,TOOLS,PEID

214

SME4,TOOLS,LordPE

SME4,TOOLS,Binnavi

SME5,TOOLS,WinDbg

SME5,TOOLS,In Linux GCC

SME5,TOOLS,Visual studio

SME5,TOOLS,IDA

SME5,TOOLS,Scripts

SME5,TOOLS,Some tool to document your progress and manage

knowledge

SME5,TOOLS,Tracing data flow is difficult

215

Appendix H. Goal-Directed Task Analysis of Reverse Engineering an

Executable Program

{topgoal}{Quickly Understand as Much as Possible About the Program}

{goal}{Understand the Purpose of Analysis}

{subgoal}{Understand the type of reverse engineering task}

{decision}{Is it a malware analysis task?}

{information}{Trustworthiness of program}

{information}{Program’s originator}

{information}{Where the program came from}

{information}{Trustworthiness of program’s originator}

{decision}{Is it a vulnerability discovery task?}

{information}{System(s) the program will run on}

{information}{accessibility of the system (network)}

{information}{typical users of the program and system}

{information}{scale of the program (how many users)}

{information}{how protected the system is}

{information}{the mission supported by the system}

{information}{access level of the program}

{information}{whether source code is available}

{information}{whether the customer wants an exploit}

{decision}{Does the task involve breaking a protection?}

{information}{if the program is known to be protected}

{information}{if circumventing the protection is needed}

{information}{encryption in program sections}

{information}{if assembly instructions aren’t available}

{information}{if functionality relies on outside data}

{decision}{Is task documenting/re-writing the program?}

{information}{if customer needs to interface with program}

{information}{if source code is not available}

{information}{if customer relies on program’s functionality}

{information}{if program’s authors are not available}

{subgoal}{Understand how analysis should be represented}

{decision}{Will the customer want a report/tutorial?}

{information}{if the customer asked for a report}

{information}{whether novel elements need explained}

{information}{if the purpose is to inform decisions}

{information}{if the purpose is to develop security controls}

{information}{if the purpose is for training others}

{decision}{Does the customer want a documented IDA database?}

{information}{if the analysis will be reused}

{information}{if novel techniques may be present}

216

{information}{if other representations are not sufficient}

{decision}{Does the customer want a proof of concept exploit?}

{information}{if analysis involves discovering vulnerabilities}

{information}{if analysis is to justify expenditures}

{goal}{Discover the General Properties of the Program}

{subgoal}{2.1 Determine the likely trustworthiness of the program}

{decision}{Does the program come from a trustworthy source?}

{decision}{Is the program likely malware? (ref)}

{decision}{Is the program signed by an organization?}

{information}{program signature}

{decision}{Does the program’s hash value match the public hash?}

{information}{program hash value}

{information}{publicly-advertised hash value}

{decision}{Does the program have a normal install process?}

{information}{install process}

{decision}{Is there anything else suspicious about the program?}

{information}{observations about the program}

{subgoal}{Determine if the program is/has malware}

{decision}{Does the program fail an anti-virus scan?}

{information}{antivirus scan results}

{decision}{Does the program create copies of itself?}

{information}{presence of code that writes instructions}

{information}{observations of a new program written to disk}

{information}{presence of function to generate semi-random text}

{decision}{Does the program try to download or run other programs?}

{information}{Presence of hardcoded IP address in program data}

{information}{presence of hardcoded web address in program data}

{information}{network communication over IRC}

{information}{network communication over an unknown protocol}

{decision}{Does the program try to hide its presence?}

{information}{if it traverses the operating system’s process list}

{information}{presence of device driver code}

{information}{marks files as hidden}

{decision}{Does the program attempt to persist on the system?}

{information}{whether it writes a link to a startup folder}

{information}{presence of registry keys related to startup}

{information}{creates a task to be scheduled}

{decision}{Does the program try to escalate its privilige level?}

{decision}{Does the program try to get a shell?}

{decision}{Does the program try to capture user data?}

{decision}{Is the program packed or encrypted?}

217

{information}{parts of the program do not disassemble}

{information}{the import address table is not readable}

{information}{the program matches signature of known packer}

{decision}{Does the program have an unusual-looking header?}

{information}{values in normally empty header fields}

{information}{presence of the DOS header}

{information}{excessive number of sections}

{information}{zero-length sections}

{information}{header marked executable}

{decision}{Does the code show a normal programming style?}

{information}{if the code seems to be broken into functions}

{information}{if the code does not jump around too much}

{information}{if there is hierarchy structure to the program}

{decision}{Are suspicious-looking strings visible in the program?}

{information}{values of the strings}

{decision}{Determine if the program should be monitored}

{information}{If the program spawns other threads}

{information}{If the program open up strange windows}

{information}{If the program tries to talk to the network}

{information}{If the program changes system files}

{information}{If the program attempts to execute data}

{information}{If the program tries to register / load drivers}

{subgoal}{Determine if the program has vulnerabilities}

{decision}{Does the program seem likely to have vulnerabilities?}

{information}{Is the program written in an unmanaged language?}

{information}{Was the program written by a well-known company?}

{information}{Is UI text presented professionally?}

{information}{Is the program’s user interface designed well?}

{decision}{Does the program show indicators of unsafe coding?}

{information}{Does the program use unsafe API function calls?}

{information}{Does the program look to use a lot of pointers?}

{information}{Does the program check input values?}

{information}{Does the program show a function-based design?}

{goal}{Localize Effects and Behaviors in the Code}

{goal}{Understand How Program Uses the System Interface}

{subgoal}{Determine system calls made by the program}

{subgoal}{Determine behaviors made by sequences of calls}

{goal}{Understand, Abstract, and Label Program’s Functions}

{subgoal}{Determine program behaviors that seem important}

218

{subgoal}{Determine intermodular calls that seem important}

{subgoal}{Determine how functions call each other}

{subgoal}{Determine the preconditions of a function}

{subgoal}{Determine the postconditions of a function}

{sugboal}{Determine program elements changed by a function}

{subgoal}{Find important functions in the code}

{goal}{Understand, Abstract, and Label Instruction-Level Information}

{subgoal}{Determine how data flows through the function}

{subgoal}{Determine what data elements trigger conditional jumps}

{subgoal}{Match the behavior of the function to a known pattern}

{goal}{Understand how the Program Uses Data}

{subgoal}{Trace the Data Forward from an Input}

{subgoal}{Trace the Data Backward from an Event}

{decision}{Does the event depend on this code?}

{information}{Map of data flow}

{goal}{Construct a Complete Picture of the Program}

{subgoal}{Understand the components of the program}

{subgoal}{Understand how the components work together}

219

Appendix I. Observational Study Coded Data (Participant C)

Goal Plan Carry Sense Interpret Update Hypothesis
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1
11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 1
20 1
21 1
22 1
23 1
24 1
25 1
26 1
27
28 1
29 1
30 1

220

Goal Plan Carry Sense Interpret Update Hypothesis
31 1
32 1
33 1
34 1
35 1
36 1
37 1
38 1
39 1
40 1
41 1
42 1 1
43 1
44 1
45 1
46 1
47 1
48 1
49 1
50 1
51 1
52 1
53 1
54 1
55 1
56 1
57 1
58 1
59 1
60 1
61 1
62 1
63 1
64 1
65 1
66 1
67 1
68 1
69 1
70 1

221

Goal Plan Carry Sense Interpret Update Hypothesis
71 1
72 1
73 1
74 1
75 1
76 1
77 1
78 1
79 1
80 1
81 1
82 1
83 1
84 1
85 1
86 1
87 1
88 1
89 1
90 1
91 1
92 1
93 1
94 1
95 1
96 1
97 1
98 1
99 1
100 1
101 1
102 1
103 1
104 1
105 1
106 1
107 1
108 1
109 1
110 1

222

Goal Plan Carry Sense Interpret Update Hypothesis
111 1
112 1
113 1
114 1
115 1
116 1
117 1
118 1
119 1
120 1
121 1
122 1
123 1
124 1
125 1
126 1
127 1
128 1
129 1
130 1
131 1
132 1
133 1
134 1
135 1
136 1
137 1
138 1
139 1
140 1
141 1
142 1
143 1
144 1
145 1
146 1
147 1
148 1
149 1
150 1

223

Goal Plan Carry Sense Interpret Update Hypothesis
151 1
152 1
153 1
154 1
155 1
156 1
157 1
158 1
159 1
160 1
161 1
162 1
163 1
164 1
165 1
166 1
167 1
168 1
169 1
170 1
171 1
172 1
173 1
174 1
175 1
176 1
177 1
178 1
179 1
180 1
181 1
182 1
183 1
184 1
185 1
186 1
187 1
188 1
189 1
190 1

224

Goal Plan Carry Sense Interpret Update Hypothesis
191 1
192 1
193 1
194 1
195 1
196 1
197 1
198 1
199 1
200 1
201 1
202 1
203 1
204 1
205 1
206 1
207 1
208 1
209 1
210 1
211 1
212 1
213 1
214 1
215 1
216 1
217 1
218 1
219 1
220 1
221 1
222 1
223 1
224 1
225 1
226 1
227 1
228 1
229 1

225

Goal Plan Carry Sense Interpret Update Hypothesis
230 1
231 1
232 1
233 1
234 1
235 1
236 1
237 1
238 1
239 1
240 1
241 1
242 1
243 1
244 1
245 1
246 1
247 1
248 1
249 1
250 1
251 1
252 1
253 1
254 1
255 1
256 1
257 1
258 1
259 1
260 1
261 1
262 1
263 1
264 1
265

226

Appendix J. Observational Study Coded Data (Participant D)

Goal Plan Carry Sense Interpret Update Hypothesis
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1
11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 1
20 1
21 1
22 1
23 1
24 1
25 1
26 1
27 1
28 1
29 1
30 1

227

Goal Plan Carry Sense Interpret Update Hypothesis
31 1
32 1
33 1
34 1
35 1
36 1
37 1
38 1
39 1
40 1
41 1
42 1
43 1 1
44 1
45 1
46 0 1
47 1
48 1
49 0 1
50 1
51 1
52 0 1
53 1
54 0 1
55 0 1
56 1
57 1
58 1
59 1
60 1
61 1
62 1
63 1
64 1
65 1
66 1
67 1
68 1
69 1
70 1

228

Goal Plan Carry Sense Interpret Update Hypothesis
71 1
72 1
73 1
74 1
75 1
76 1
77 1
78 1
79 1
80 1
81 1
82 1
83 1
84 1
85 1
86 1
87 1
88 1
89 1
90 1
91 1
92 1
93 1
94 1
95 1
96 1
97 1
98 1
99 1
100 1
101 1
102 1
103 1
104 1
105 1
106 1
107 1
108 1
109 1
110 1

229

Goal Plan Carry Sense Interpret Update Hypothesis
111 1
112 1
113 1
114 1
115 1
116 1
117 1
118 1
119 1
120 1
121 1
122 1
123 1
124 1
125 1
126 1
127 1
128 1
129 1
130 1
131 1
132 1
133 1
134 1
135 1
136 1
137 1
138 1
139 1
140 1
141 1
142 1
143 1
144 1
145 1
146 1
147 1
148 1
149 1
150 1

230

Goal Plan Carry Sense Interpret Update Hypothesis
151 1
152 1
153 1
154 1
155 1
156 1
157 1
158 1
159 1
160 1
161 1
162 1
163 1
164 1
165 1
166 1
167 1
168 1
169 1
170 1
171 1
172 1
173 1
174 1
175 1
176 1
177 1
178 1
179 1
180 1
181 1
182 1
183 1
184 1
185 1
186 1
187 1
188 1
189 1
190 1

231

Goal Plan Carry Sense Interpret Update Hypothesis
191 1
192 1
193 1
194 1
195 1
196 1
197 1
198 1
199 1
200 1
201 1
202 1
203 1
204 1
205 1
206 1
207 1
208 1
209 1
210 1
211 1
212 1
213 1
214 1
215 1
216 1
217 1
218 1
219 1
220 1
221 1
222 1
223 1
224 1
225 1
226 1
227 1
228 1
229 1
230 1

232

Goal Plan Carry Sense Interpret Update Hypothesis
231 1
232 1
233 1
234 1
235 1
236 1
237 1
238 1
239 1
240 1
241 1
242 1
243 1
244 1
245 1
246 1
247 1
248 1
249 1
250 1
251 1
252 1
253 1
254 1
255 1
256 1
257 1
258 1
259 1
260 1

233

Goal Plan Carry Sense Interpret Update Hypothesis
261 1
262 1
263 1
264 1
265 1
266 1
267 1
268 1
269 1
270 1
271 1
272 1
273 1
274 1
275 1
276 1
277 1
278 1
279 1
280 1
281 1
282 1
283 1
284 1
285 1
286 1
287 1
288 1
289 1
290 1
291 1
292 1
293 1
294 1
295 1
296 1
297 1
298 1
299 1
300 1

234

Goal Plan Carry Sense Interpret Update Hypothesis
301 1
302 1
303 1
304 1
305 1
306 1
307 1
308 1
309 1
310 1
311 1
312 1
313 1
314 1
315 1
316 1
317 1
318 1
319 1
320 1

235

Bibliography

1. Aho A., Lam M., Sethi R., and Ullman J. Compilers: Principles, Techniques,
and Tools . Pearson/Addison Wesley, 2007.

2. Allemang D. “Functional representation and program debugging. Introduction:
Plans and devices,” Artificial Intelligence, 136–143 (1991).

3. Anderson C. A., Lepper M. R., and Ross L. “Perseverance of Social Theories:
The Role of Explanation in the Persistence of Discredited Information,” Journal
of Personality and Social Psychology , 39 :10371049 (1980).

4. Anderson J. R., Bothell D., Byrne M. D., Douglass S., Lebiere C., and Qin
Y. “An integrated theory of the mind,” Psychological Review , 111 (4):1036–60
(October 2004).

5. Anderson J. “Methodologies for studying human knowledge,” Behavioral and
Brain Sciences , 10 (03):467–505 (February 1987).

6. Anderson J. How Can the Human Mind Occur in the Physical Universe? , 3 .
Oxford University Press, USA, 2007.

7. Anderson T. W. and Goodman L. A. “Statistical inference about Markov
chains,” Annals of Mathematical Statistics , 28 :89–110 (1957).

8. Bakeman R. and Gottman J. M. Observing Interaction: An Introduction to
Sequential Analysis (2nd Edition). Cambridge: Cambridge University Press,
1997.

9. Balakrishnan G., Reps T., Melski D., and Teitelbaum T. “WYSINWYX: What
you see is not what you execute,” Verified Software: Theories, Tools, Experi-
ments , 202–213 (2007).

10. Barsalou L. W. “Perceptual symbol systems,” The Behavioral and Brain Sci-
ences , 22 (4):577–609; discussion 610–60 (August 1999).

11. Barsalou L. “Simulation, situated conceptualization, and prediction,” Philosoph-
ical Transactions of the Royal Society B: Biological Sciences , 364 (1521):1281–
1289 (2009).

12. Barsalou L., Yeh W., Luka B., Olseth K., Mix K., and Wu L. “Concepts and
meaning.” Chicago Linguistics Society 29: Papers from the parasession on con-
ceptual representations edited by K. Beals, et al., Chicago Linguistics Society,
1993.

13. Basili V. and Mills H. “Understanding and Documenting Programs,” IEEE
Transactions on Software Engineering , SE-8 (3):270–283 (May 1982).

236

14. Baxter G., Monk A., Tan K., Dear P., and Newell S. “Using cognitive task
analysis to facilitate the integration of decision support systems into the neonatal
intensive care unit,” Artificial Intelligence in Medicine, 35 (3):243–257 (2005).

15. Bayer U., Kirda E., and Kruegel C. “Improving the efficiency of dynamic mal-
ware analysis.” Proceedings of the 2010 ACM Symposium on Applied Computing .
1871–1878. 2010.

16. Bayer U., Moser A., Kruegel C., and Kirda E. “Dynamic analysis of malicious
code,” Journal of Computer Virology , 2 (1):67–77 (2006).

17. Beklin N. J. “Anomalous states of knowledge as a basis for information retrieval,”
Canadian Journal of Information and Library Science, 5 (1980).

18. Benbasat I., Goldstein D., and Mead M. “The case research strategy in studies
of information systems,” MIS quarterly , 369–386 (1987).

19. Biggerstaff T., Mitbander B., and Webster D. “Program understanding and
the concept assignment problem,” Communications of the ACM , 37 (5):72–82
(1994).

20. Binmore K. “Making decisions in large worlds,” Annales d’Economie et de
Statistique, 86 :4 (2007).

21. Birrer B., Raines R., Baldwin R., Oxley M., and Rogers S. “Using qualia and
hierarchical models in malware detection,” Journal of Information Assurance
and Security , 4 :247–255 (2009).

22. Blunden B. The Rootkit Arsenal: Escape and Evasion in the Dark Corners of
the System. Wordware, 2009.

23. Booker L. Intelligent Behavior as an Adaptation to the Task Environment . PhD
dissertation, The University of Michigan, 1982.

24. Bozsahin H. C. and Findler N. V. “Memory-based hypothesis formation: heuris-
tic learning of commensense causal relations from text,” Cognitive Science,
16 :431–454 (1992).

25. Brickner M. and Lipshitz R. Pilot study: System model of situation aware-
ness:“Sensemaking” and decision making in command and control . Journal ar-
ticle, Human Effectiveness Directorate, Air Force Research Laboratory, 2004.

26. Bright P., “pwn2own day one: Safari, IE8 fall, Chrome unchallenged,” 2011.

27. Brinson A., Robinson A., and Rogers M. “A cyber forensics ontology: Creat-
ing a new approach to studying cyber forensics,” Digital Investigation, 3 :37–43
(September 2006).

28. Brooks R. “Towards a theory of the comprehension of computer programs,”
International Journal of Man-Machine Studies , 18 (6):543–554 (1983).

237

29. Brooks R. “Elephants don’t play chess,” Robotics and Autonomous Systems ,
6 (1-2):3–15 (June 1990).

30. Bryant A. “Toward detecting novel software attacks by using constructs from hu-
man cognition.” Proceedings of the 3rd International Conference on Information
Warfare and Security, Peter Kiewit Institute, University of Nebraska, Omaha
USA, 24-25 April 2008 . 2008.

31. Bryant A. and Grimaila M. “Developing a Framework to Improve Information
Assurance Battlespace Knowledge.” Proceedings of the 2nd International Con-
ference on Information Warfare & Security . 17. Academic Conferences Limited,
2007.

32. Bryant A. Evaluating Organizational Information Assurance Metrics Programs
(Masters Thesis). Technical Report, Department of Systems and Engineering
Management, Air Force Institute of Technology, 2007.

33. Bryant A., Mills R., Peterson G., and Grimaila M. “(in press) Software reverse
engineering as a sensemaking task,” Journal of Information Assurance and Se-
curity (2012).

34. Bylander T., Allemang D., Tanner M., and Josephson J. “The computational
complexity of abduction* 1,” Artificial Intelligence, 49 (1-3):25–60 (1991).

35. Byrne E. “A conceptual foundation for software re-engineering.” Proceedings of
the Conference on Software Maintenance, 1992 . 226–235. 1992.

36. CamStudio Developers , “CamStudio,” 2011.

37. Canzanese , Jr.R., Oyer M., Mancoridis S., and Kam M., “A survey of reverse
engineering tools for the 32-bit Microsoft Windows environment,” 2005.

38. Card S., Moran T., and Newell A. The Psychology of Human-Computer Inter-
action. CRC, 1983.

39. Chandrasekaran B. Design and Diagnosis Problem Solving with Multifunctional
Technical Knowledge Bases . Technical Report, Laboratory for Artificial Intelli-
gence Research, The Ohio State University, 1992.

40. Chi E., Pirolli P., Chen K., and J. P. “Using information scent to model user
information needs and actions and the web.” Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems . 490 – 497. 2001.

41. Chi M. T. H. “Quantifying qualitative analyses of verbal data: A practical
guide,” Journal of the Learning Sciences , 6 :271–315 (1997).

42. Chikofsky E., Cross J., and Others . “Reverse engineering and design recovery:
A taxonomy,” IEEE Software, 7 (1):13–17 (1990).

43. Christodorescu M., Jha S., and Kruegel C. “Mining specifications of malicious
behavior.” Proceedings of the the 6th Joint Meeting of the European Software En-

238

gineering Conference and the ACM SIGSOFT Symposium on The Foundations
of Software Engineering . 5–14. ACM, 2007.

44. Christodorescu M., Jha S., Seshia S., Song D., and Bryant R. “Semantics-aware
malware detection.” Proceedings of the 2005 IEEE Symposium on Security and
Privacy . 32–46. 2005.

45. Clark R. and Estes F. “Cognitive task analysis for training,” International
Journal of Educational Research, 25 (5):403–417 (1996).

46. Cohen F. “Computer viruses: Theory and experiments,” Computers & Security ,
6 (1):22–35 (1987).

47. Cohen J. and others . “A coefficient of agreement for nominal scales,” Educa-
tional and Psychological Measurement , 20 (1):37–46 (1960).

48. Cohen L., Manion L., Morrison K., and Morrison K. Research Methods in Edu-
cation. Psychology Press, 2007.

49. Collaborative RCE Tool Library , “LordPE,” 2011.

50. Collberg C., Thomborson C., and Low D. A taxonomy of obfuscating trans-
formations . Technical report, Department of Computer Science, University of
Auckland, 1997.

51. Conrad F., Blair J., and Tracy E. “Verbal reports are data! A theoretical
approach to cognitive interviews.” Proceedings of the Federal Committee on Sta-
tistical Methodology Research Conference. 11–20. Citeseer, 1999.

52. Cooke N. “Varieties of knowledge elicitation techniques,” International Journal
of Human-Computer Studies , 41 (6):801–849 (1994).

53. Corritore C. “An exploratory study of program comprehension strategies of
procedural and object-oriented programmers,” International Journal of Human-
Computer Studies , 54 (1):1–23 (January 2001).

54. Crandall B. and Getchell-Reiter K. “Critical decision method: A technique
for eliciting concrete assessment indicators from the intuition of NICU nurses,”
Advances in Nursing Science (1993).

55. Crandall B., Klein G., and Hoffman R. Working Minds: A Practitioner’s Guide
to Cognitive Task Analysis . Cambridge, MA: The MIT Press, 2006.

56. Crandall B., “Personal communication,” May 2009.

57. Cyclops , “Crackmes by Cyclops,” 2011.

58. D’Amico A., Whitley K., Tesone D., O’Brien B., and Roth E. “Achieving cyber
defense situational awareness: a cognitive task analysis of information assurance
analysts.” Proceedings of the Human Factors and Ergonomics Society Annual
Meeting49 . 229–233. 2005.

239

59. Davenport T. H. and Prusak L. Working Knowledge: How Organizations Man-
age What They Know . Harvard Business Press, 2000.

60. De Groot A. Thought and Choice in Chess , 4 . Mouton De Gruyter, 1978.

61. Détienne F. “Expert programming knowledge: a schema-based approach.” Psy-
chology of Programming 205 – 222, Academic Press, People and Computer Series,
1990.

62. Dixon S., Wickens C., and Chang D. “Mission control of multiple unmanned
aerial vehicles: A workload analysis,” Human Factors: The Journal of the Hu-
man Factors and Ergonomics Society , 47 (3) (2005).

63. Drepper U., “What every programmer should know about memory (2007),”
2010.

64. Duala-Ekoko E. and Robillard M. “Tracking code clones in evolving software.”
Proceedings of the 29th international conference on Software Engineering . 158–
167. 2007.

65. Eilam E. Reversing: Secrets of Reverse Engineering . Wiley, 2005.

66. Eisenhardt K. M. “Building Theories from Case Study Research,” Academy of
Management Review , 14 (4):532–550 (1989).

67. Endsley M. R. “Situation models: An avenue to the modeling of mental mod-
els.” Proceedings of the 14th Triennial Congress of the International Ergonomics
Association and the 44th Annual Meeting of the Human Factors and Ergonomics
Society . 2000.

68. Endsley M. “Toward a theory of situation awareness in dynamic systems,”
Human Factors: The Journal of the Human Factors and Ergonomics Society ,
37 (1):32–64 (1995).

69. Endsley M. and Rodgers M. “Situation awareness information requirements
analysis for en route air traffic control.” Proceedings of the Human Factors and
Ergonomics Society 38th Annual Meeting38 . 71–75. 1994.

70. Engelmore R., Feigenbaum E., Friedland P., Johnson B., Shrobe H., Schorr H.,
and Nii H. Knowledge-based systems in Japan. Technical Report, Japanese
Technology Evaluation Center, 1993.

71. Erickson J. Hacking: The Art of Exploitation. No Starch Press, 2008.

72. Ericsson K. and Simon H. “Verbal reports as data,” Psychological review ,
87 (3):215 (1980).

73. Fikes R. and Nilsson N. “STRIPS: A new approach to the application of theorem
proving to problem solving,” Artificial intelligence, 2 (3-4):189–208 (1971).

74. Fix V. and Wiedenbeck S. “Mental representations of programs by novices and
experts,” Proceedings of INTERCHI , 74–79 (1993).

240

75. Fu W. and Pirolli P. “SNIF-ACT: A cognitive model of user navigation on the
World Wide Web,” Human-Computer Interaction, 22 (4):355–412 (2007).

76. Gaddis T. Starting Out With C++: From Control Structures Through Objects
(6th Edition). MA: Boston: Pearson Education, 2009.

77. Gannod G. and Cheng B. “A formal approach for reverse engineering: a case
study,” Sixth Working Conference on Reverse Engineering (Cat. No.PR00303),
100–111 (1999).

78. Geertz C. “Thick description: towards an interpretive theory of culture.” The
Interpretation of Cultures edited by C. Geertz, New York: Basic Books, 1973.

79. Geib C. “Plan recognition.” Adversarial Reasoning: Computational Approaches
to Reading the Opponent’s Mind edited by A. Kott and W. M McEneaney, 77–
95, Chapman & Hall/CRC, 2007.

80. Gentner D. and Stevens A. Mental Models . Lawrence Erlbaum, 1983.

81. Gharajedaghi J. Systems Thinking: Managing Chaos and Complexity: A Plat-
form for Designing Business Architecture. Elsevier, 1999.

82. Goodall J., Radwan H., and Halseth L. “Visual analysis of code security.”
Proceedings of the Seventh International Symposium on Visualization for Cyber
Security . 46–51. 2010.

83. Green T. “Usability analysis of visual programming environments: A ’cognitive
dimensions’ framework,” Journal of Visual Languages & Computing , 7 (2):131–
174 (June 1996).

84. Grimaila M. and Fortson L. “Towards an Information Asset-Based Defensive
Cyber Damage Assessment.” Proceedings of the IEEE Symposium on Computa-
tional Intelligence in Security and Defense Applications (CISDA). 2007.

85. Heelan S. “Vulnerability Detection Systems: Think Cyborg, Not Robot,” Secu-
rity & Privacy, IEEE , 9 (3):74–77 (2011).

86. Hendry D. “Sketching with conceptual metaphors to explain computational pro-
cesses.” Visual Languages and Human-Centric Computing (VL/HCC’06). 95–
102. IEEE, 2006.

87. Hennessy J., Patterson D., and Goldberg D. Computer Architecture: A Quanti-
tative Approach. Morgan Kaufmann, 2003.

88. Hex-Rays , “The IDA Pro Disassembler and Debugger,” 2011.

89. Hitchcock G. and Hughes D. Research and the Teacher: A Qualitative Introduc-
tion to School-Based Research. Burns & Oates, 1995.

90. Hoffman R., “Eliciting knowledge from experts: A methodological analysis,”
May 1995.

241

91. Hoglund G. and Butler J. Rootkits: Subverting the Windows Kernel . Addison-
Wesley Professional, 2006.

92. Hoglund G. and McGraw G. Exploiting Software: How to Break Code. Addison-
Wesley, 2005.

93. Hopgood A. Knowledge-Based Systems for Engineers and Scientists . CRC Press,
Inc. Boca Raton, FL, USA, 1993.

94. Huang P. and Sycara K. “Learning from and about the opponent.” Adversarial
Reasoning: Computational Approaches to Reading the Opponents Mind edited
by A. Kott and W. McEneaney, Boca Raton: Chapman & Hall/CRC Computer
and Information Science Series, 2007.

95. IARPA Office of Safe and Secure Operations , “Solicitations: Securely Taking On
New Executable Software of Uncertain Provenance (STONESOUP) Program,”
2009.

96. Immunity, Inc. , “Immunity Debugger,” 2011.

97. Intel, Inc. . Intel 64 and IA-32 Architectures Software Develper’s Manual. Com-
bined Volumes: 1, 2A, 2B, 3A and 3B . Intel, Inc., 2011.

98. John B. E. and Kieras D. E. “Using GOMS for user interface design and evalua-
tion: Which technique?,” ACM Transactions on Computer-Human Interaction,
3 (4):287–319 (December 1996).

99. Johnson T. and Krems J. “Use of current explanations in multicausal abductive
reasoning,” Cognitive Science, 25 (6):903–939 (2001).

100. Johnson W. and Soloway E. “PROUST: Knowledge-based program understand-
ing,” IEEE Transactions on Software Engineering , 267–275 (1985).

101. Johnson-Laird P. Mental Models . Cambridge Univ. Press Cambridge, UK, 1983.

102. Johnson-Laird P. How We Reason. Oxford University Press, USA, 2009.

103. Josephson J. R., Chandrasekaran B., Smith J. W., and Tanner M. C. “A Mech-
anism for Forming Composite Explanatory Hypotheses,” IEEE Transactions on
Systems, Man, and Cybernetics , 17 (3):445–454 (1987).

104. Josephson J. Abductive Inference: Computation, Philosophy, Technology . Cam-
bridge Univ Pr, 1996.

105. Kahneman D. Attention and Effort . Prentice-Hall, Inc., 1973.

106. Kahneman D. The Simulation Heuristic. Technical Report, Department of
Psychology, Stanford University, 1981.

107. Kahneman D., Slovic P., and Tversky A., editors. Judgment Under Uncertainty:
Heuristics and Biases . New York: Cambridge University Press, 1982.

242

108. Kapoor A. An approach towards disassembly of malicious binary executables .
Master’s Thesis, The Center for Advanced Computer Studies, University of
Louisiana at Lafayette, 2004.

109. Kemp C., Goodman N., and Tenenbaum J. “Learning causal schemata.” Pro-
ceedings of the Twenthy-Ninth Annual Meeting of the Cognitive Science Society .
389–394. 2007.

110. Kintsch W. “The role of knowledge in discourse comprehension: A construction-
integration model,” Psychological review , 95 (2):163 (1988).

111. Kirwan B. and Ainsworth L. A Guide to Task Analysis . Taylor & Francis, 1992.

112. Klein G. The Power of Intuition: How to Use Your Gut Feelings to Make Better
Decisions at Work . Random House, Inc., 2004.

113. Klein G. “Naturalistic decision making,” Human Factors , 50 (3) (2008).

114. Klein G., Moon B., and Hoffman R. “Making sense of sensemaking 1: Alternative
perspectives,” IEEE Intelligent Systems , 21 (4):70–73 (2006).

115. Klein G., Phillips J., Rall E., and Peluso D. “A data-frame theory of sensemak-
ing.” Expertise Out of Context: Proceedings of the Sixth International Conference
on Naturalistic Decision Making . 113–155. 2007.

116. Lee N. and Johnson-Laird P. “Synthetic reasoning and the reverse engineering
of boolean circuits.” Proceedings of the Twenty-Seventh Annual Conference of
the Cognitive Science Society, Stresa, Italy . 1260–1265. 2005.

117. Leedy P. D. and Ormrod J. E. Practical Research: Planning and Design (7th
Edition). Upper Saddle River, NJ: Merrill Prentice Hall, 2001.

118. Lethbridge T., Sim S., and Singer J. “Studying software engineers: data col-
lection techniques for software field studies,” Empirical Software Engineering ,
10 :311–341 (2008).

119. Letovsky S. and Soloway E. “Delocalized plans and program comprehension,”
IEEE Software, 3 (3):41–49 (May 1986).

120. Menzies T. “Applications of abduction: Knowledge-level modelling,” Interna-
tional Journal of Human-Computer Studies , 45 (3):305–335 (September 1996).

121. Merrill M. “Knowledge objects and mental models.” Advanced Learning Tech-
nologies, 2000. IWALT 2000. Proceedings. International Workshop on. 244–246.
2000.

122. Meunier P. “Classes of Vulnerabilities and Attacks.” Wiley Handbook of Science
and Technology for Homeland Security edited by J. G. Voeller, Wiley, 2011.

123. mh nexus , “HxD - Freeware Hex Editor and Disk Editor,” 2011.

124. Michalewicz Z. and Fogel D. How to Solve It: Modern Heuristics . Springer-
Verlag New York Inc, 2004.

243

125. Microsoft, Inc. , “WinDbg,” 2011.

126. Microsoft, Inc. , “Windows XP Professional,” 2011.

127. Militello L. and Hutton R. “Applied Cognitive Task Analysis (ACTA): A
practitioner’s toolkit for understanding cognitive task demands,” Ergonomics ,
41 (11):1618–1641 (1998).

128. Militello L., Hutton R., Pliske R., Knight B., Klein G., and Randel J. Ap-
plied cognitive task analysis (ACTA) methodology: A detailed description of how
to conduct the ACTA method . Journal article, Navy Personnel Research and
Development Center, 1997.

129. Miller T. “A Cognitive approach to developing tools to support planning.”
Linking Expertise and Naturalistic Decision Making edited by E. Salas and G. A.
Klein, 95–111, Lawrence Erlbaum, 2001.

130. Minsky M. “A Framework for Representing Knowledge.” The Psychology of
Computer Vision edited by P. Winston, McGraw-Hill, 1974.

131. Morik K., Kietz B., Emde W., and Wrobel S. Knowledge acquisition and machine
learning . Morgan Kaufmann Publishers, Inc. San Francisco, CA, USA, 1993.

132. Morris N. and Rouse W. “Review and evaluation of empirical research in
troubleshooting,” Human Factors: The Journal of the Human Factors and Er-
gonomics Society , 27 (5):503–530 (1985).

133. Nash T. An Undirected Attack Against Critical Infrastructure. Technical Report,
US-CERT Control Systems Security Center, 2005.

134. Newell A. Unified Theories of Cognition. Cambridge, MA: Harvard University
Press, 1990.

135. Newell A. and Simon H. Human Problem Solving . Prentice-Hall Englewood
Cliffs, NJ, 1972.

136. Ngbala A. and Branscombe N. “Mental simulation and causal attribution: When
simulating an event does not affect fault assignment,” Journal of Experimental
Social Psychology , 31 (2):139–162 (1995).

137. Nonaka I. and Takeuchi H. “The knowledge-creating company,” Harvard Busi-
ness Review , 6 :96–104 (1991).

138. Norman D. “Some observations on mental modeIs.” Mental Models edited by
D. Gentner, Lawrence Erlbaum, 1983.

139. Norman D. The Design of Everyday Things . New York: Basic Books, 2002.

140. OllyDbg , “OllyDbg,” 2011.

141. OReilly R. The Leabra Model of Neural Interactions and Learning in the Neo-
cortex . PhD dissertation, Carnegie Mellon University, 1996.

244

142. Patton M. Qualitative Evaluation and Research Methods . Sage Publications,
1990.

143. Pearl J. Heuristics–intelligent search strategies for computer problem solving .
Addison-Wesley Publishing Co., Reading, MA, 1984.

144. Pearl J. Causality: Models, Reasoning, and Inference. Cambridge Univ Pr,
2000.

145. PEiD Team , “PEiD,” 2011.

146. Pennington N. “Stimulus structures and mental representations in expert com-
prehension of computer programs,” Cognitive Psychology , 19 (3):295–341 (1987).

147. Pennington N. and Hastie R. “Reasoning in explanation-based decision making,”
Cognition, 49 (1-2):123–163 (1993).

148. Petrowski J. and Taillard P. Metaheuristics for Hard Optimization. Springer-
Verlag, 2006.

149. Petzold C. Programming Windows (5 Edition). Microsoft Press, 1999.

150. Pirolli P. and Card S. “The sensemaking process and leverage points for ana-
lyst technology as identified through cognitive task analysis.” Proceedings of the
International Conference on Intelligence Analysis . 2–4. 2005.

151. Popper K. All Life is Problem Solving . London: Routledge, 1999.

152. Popper K. Conjectures and Refutations: The Growth of Scientific Knowledge.
London: Routledge, 2003.

153. President of the United States O. The National Strategy to Secure Cyberspace.
Technical Report, President of the United States, Office of, 2009.

154. Quesada J., Kintsch W., and Gomez E. “Complex problem-solving: a field in
search of a definition?,” Theoretical Issues in Ergonomics Science, 6 (1):5–33
(2005).

155. Quilici a. and Woods S. “Applying plan recognition algorithms to program
understanding,” Proceedings of the 11th Knowledge-Based Software Engineering
Conference, 372 :96–103 (1998).

156. Quist D. and Liebrock L. “Visualizing compiled executables for malware anal-
ysis.” Visualization for Cyber Security, 2009. VizSec 2009. 6th International
Workshop on. 27–32. 2009.

157. Rajlich V. “Intensions are a key to program comprehension,” 17th International
Conference on Program Comprehension, 1–9 (May 2009).

158. Robson C. Real World Research (2nd Edition). Blackwell, 2002.

159. Roth E., Malsch N., Multer J., and Coplen M. “Understanding how train dis-
patchers manage and control trains: A cognitive task analysis of a distributed

245

team planning task.” Human Factors and Ergonomics Society Annual Meeting
Proceedings43 . 218–222. 1999.

160. Roth E., Woods D., and Pople H. “Cognitive simulation as a tool for cognitive
task analysis,” Ergonomics (1992).

161. Rumelhart D., Ortony A., and Others . The representation of knowledge in mem-
ory . Center for Human Information Processing, Dept. of Psychology, University
of California, San Diego, 1976.

162. Rumelhart D. and Ortony A. “The representation of knowledge in memory.”
Schooling and the Acquisition of Knowledge edited by Anderson, R.C. and Spiro,
R.J. and Montague, W.E., Hillsdale, N.J.: Erlbaum, 1977.

163. Runeson P. and Höst M. “Guidelines for conducting and reporting case study
research in software engineering,” Empirical Software Engineering , 14 :131–164
(2009).

164. Russell D. M., Stefik M. J., Pirolli P., and Card S. K. “The cost structure
of sensemaking,” Proceedings of the SIGCHI conference on Human factors in
computing systems - CHI ’93 , 269–276 (1993).

165. Russell S. and Norvig P. Artificial Intelligence: A Modern Approach. Pearson
Education, 2003.

166. Russinovich M. and Cogswell B., “Windows Sysinternals,” 2011.

167. Russinovich M. and Solomon D. Microsoft Windows Internals . Microsoft Press,
2005.

168. Ryan G. W. and Bernard H. R. “Techniques to Identify Themes,” Field Methods ,
15 (1):85–109 (2003).

169. Sarter N. B. and Woods D. D. “Situation awareness: A critical but ill-defined
phenomenon,” The International Journal of Aviation Psychology , 1 (1):45–57
(1991).

170. Sarter N., Woods D., and Billings C. “Automation surprises.” Handbook of
Human Factors and Ergonomics 1926–1943, John Wiley and Sons, 1997.

171. Schank R., Abelson R., and Others . Scripts, Plans, Goals and Understanding:
An Inquiry Into Human Knowledge Structures . Lawrence Erlbaum Associates,
New Jersey, 1977.

172. Schneider, T. , “crackme.de,” jan 2011.

173. Schoenfeld A. and Herrmann D. “Problem perception and knowledge structure
in expert and novice mathematical problem solvers,” Journal of Experimental
Psychology: Learning, Memory, and Cognition, 8 (5):484 (1982).

174. Schwarz B., Debray S., and Andrews G. “Disassembly of executable code revis-
ited.” Reverse Engineering, 2002. Proceedings. Ninth Working Conference on.
45–54. 2002.

246

175. Schwenk C. “Cognitive simplification processes in strategic decision-making,”
Strategic Management Journal , 5 (2):111–128 (1984).

176. Seaman C. “Qualitative methods in empirical studies of software engineering,”
IEEE Transactions on Software Engineering , 25 :557–572 (1999).

177. Seamster T., Redding R., Cannon J., Ryder J., and Others . “Cognitive task
analysis of expertise in air traffic control,” International Journal of Aviation
Psychology (1993).

178. Shneiderman B. Software Psychology . Cambridge, MA: Winthrop Publishers,
1980.

179. Shortliffe E. H. Computer-based medical consultations: MYCIN . American
Elsevier, 1976.

180. Skoudis E. and Zeltser L. Malware: Fighting Malicious Code. NJ: Upper Saddle
River: Prentice Hall PTR, 2003.

181. Soloway E. and Ehrlich K. “Empirical Studies of Programming Knowledge,”
IEEE Transactions on Software Engineering , SE-10 (1984).

182. Song D., Brumley D., Yin H., Caballero J., Jager I., Kang M., Liang Z., Newsome
J., Poosankam P., and Saxena P. “BitBlaze: A new approach to computer
security via binary analysis.” In Proceedings of the 4th International Conference
on Information Systems Security (ICISS). 1–25. Springer, 2008.

183. Sparks S., Embleton S., Cunningham R., and Zou C. “Automated vulnerability
analysis: Leveraging control flow for evolutionary input crafting.” Computer
Security Applications Conference, 2007. ACSAC 2007. Twenty-Third Annual .
477–486. 2007.

184. Storey M. and Fracchia F. “Cognitive design elements to support the construc-
tion of a mental model during software exploration,” Journal of Systems and
Software (1999).

185. Storey M.-A. “Theories, methods and tools in program comprehension: Past,
present and future,” 13th International Workshop on Program Comprehension
(IWPC’05), 181–191 (2005).

186. Szor P. The Art of Computer Virus Research and Defense. Addison-Wesley
Professional, 2005.

187. Tanenbaum A. and Woodhull A. Operating Systems: Design and Implementa-
tion. Prentice Hall, 1997.

188. The United States Air Force Chief Scientist O. Report on Technology Horizons:
A Vision for Air Force Science & Technology During 2010 - 2030, Volume 1 .
Technical Report, United States Air Force, 2010.

247

189. Therriault D., Rinck M., and Zwwan R. “Assessing the influence of dimensional
focus during situation model construction,” Memory and Cognition, 34 :78–89
(2006).

190. Thompson K. “Reflections on trusting trust,” Communications of the ACM , 27
(August 1984).

191. TightVNC Software , “TightVNC,” 2011.

192. Tilley S. A Reverse-Engineering Environment Framework . Technical report,
Carnegie-Mellon Software Engineering Institute, 1998.

193. Tonella P., Torchiano M., Du Bois B., and Systä T. “Empirical studies in reverse
engineering: state of the art and future trends,” Empirical Software Engineering ,
12 (5):551–571 (March 2007).

194. Trickett S. and Trafton J. “A primer on verbal protocol analysis.” The PSI
Handbook of Virtual Environments for Training and Education: Developments
for the Military and Beyond edited by D. Schmorrow, et al., Westport, CT
Praeger Security International, 2007.

195. Tulving E. and Donaldson W. Organization of Memory . Academic Press, 1972.

196. Van de Maele F., “Formal concept analysis in software maintenance: State of
the art,” 2007.

197. Van Dijk T. “Relevance assignment in discourse comprehension,” Discourse
Processes , 2 (2):113–126 (1979).

198. Van Dijk T. and Kintsch W. Strategies of Discourse Comprehension. New York:
Academic Press, 1983.

199. VanLehn K. “Problem solving and cognitive skill acquisition.” Foundations of
Cognitive Science edited by Posner, M. I., MIT Press, 1989.

200. Vans M. A. “Program understanding behavior during corrective maintenance
of large-scale software,” International Journal of Human-Computer Studies ,
51 (1):31–70 (July 1999).

201. Vessey I. “Expertise in debugging computer programs: A process analysis,”
International Journal of Man-Machine Studies , 23 (5):459–494 (1985).

202. von Mayrhauser A. and Vans A. M. “Comprehension processes during large
scale maintenance.” Proceedings of the 16th international conference on Software
engineering . 39–48. IEEE Computer Society Press, 1994.

203. von Mayrhauser a. and Vans A. “From code understanding needs to reverse
engineering tool capabilities.” Computer-Aided Software Engineering, 1993.
CASE’93., Proceeding of the Sixth International Workshop on. 230–239. IEEE,
1993.

204. Weick K. Sensemaking in Organizations . Sage Publications, Inc, 1995.

248

205. Weiser M. “Programmers use slices when debugging,” Communications of the
ACM , 25 (7):446–452 (July 1982).

206. Wilson M. “Six views of embodied cognition,” Psychonomic Bulletin & Review ,
9 :625–636 (2002).

207. Wilson T. “Human Information Behavior,” Informing Science, 3 :49 – 55 (2000).

208. Wood L. E. “Semi-structured interviewing for user-centered design,” Interac-
tions , 4 (2):48–61 (March 1997).

209. Wood L. and Ford J. “Structuring interviews with experts during knowledge
elicitation,” International Journal of Intelligent Systems , 8 (1):71–90 (1993).

210. Woods D., Patterson E., and Roth E. “Can we ever escape from data overload? A
cognitive systems diagnosis,” Cognition, Technology & Work , 4 (1):22–36 (2002).

211. Yin R. Case Study Research: Design and Methods (5th Edition). Sage Publica-
tions, Inc, 2009.

212. Zeigler B. and Hammonds P. Modeling & Simulation-Based Data Engineering:
Introducing Pragmatics Into Ontologies for Net-Centric Information Exchange.
Academic Press, 2007.

213. Zhang J. and Norman D. A. “Representations in distributed cognitive tasks,”
Cognitive Science, 18 :87–122 (1994).

214. Zhang P. “Supporting sense-making with tools for structuring a conceptual
space.” The 3rd Annual i-Conference (Feb 2008, Los Angeles). 1–11. 2008.

215. Zhang P., Soergel D., Klavans J. L., and Oard D. W. “Extending sense-making
models with ideas from cognition and learning theories,” Proceedings of the
American Society for Information Science and Technology , 45 (1):23–23 (June
2009).

216. Zwaan R. and Radvansky G. “Situation models in language comprehension and
memory,” Psychological Bulletin, 123 (2):162–185 (1998).

249

Standard Form 298 (Rev. 8/98)

REPORT DOCUMENTATION PAGE

Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

	1_REPORT_DATE_DDMMYYYY: 03-22-2012
	2_REPORT_TYPE: Dissertation
	3_DATES_COVERED_From__To: 07-03-2007 - 03-22-2012
	4_TITLE_AND_SUBTITLE: Understanding How Reverse Engineers Make Sense of Programs from Assembly Language Representations.
	5a_CONTRACT_NUMBER:
	5b_GRANT_NUMBER:
	5c_PROGRAM_ELEMENT_NUMBER:
	5d_PROJECT_NUMBER: 6095WSPT
	5e_TASK_NUMBER:
	5f_WORK_UNIT_NUMBER:
	6_AUTHORS: Mr. Bryant, Adam R., Civilian
	7_PERFORMING_ORGANIZATION: Air Force Institute of TechnologyGraduate School of Engineering and Management (AFIT/EN)2950 Hobson WayWright-Patterson AFB OH 45433-7765
	8_PERFORMING_ORGANIZATION: AFIT/DCS/ENG/12-01
	9_SPONSORINGMONITORING_AG: Integrated Electronic & Net-Centric Warfare Division, Air Force Research LaboratoryDr. David Kapp2241 Avionics Circle, Wright-Patterson AFB, OH 45433david.kapp@wpafb.af.mil (937) 528-8054
	10_SPONSORMONITORS_ACRONY: AFRL/RYWA
	1_1_SPONSORMONITORS_REPOR:
	12_DISTRIBUTIONAVAILABILI: Distribution A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.
	13_SUPPLEMENTARY_NOTES:
	14ABSTRACT: This dissertation develops a theory of the conceptual and procedural aspects involved with how reverse engineers make sense of executable programs. Software reverse engineering is a complex set of tasks which require a person to understand the structure and functionality of a program from its assembly language representation, typically without having access to the program's source code. This dissertation describes the reverse engineering process as a type of "sensemaking," in which a person combines reasoning and information foraging behaviors to develop a mental model of the program. The structure of knowledge elements used in making sense of executable programs are elicited from a case study, interviews with subject matter experts, and observational studies with software reverse engineers. The results from this research can be used to improve reverse engineering tools, to develop training requirements for reverse engineers, and to develop robust computational models of human comprehension in complex tasks where sensemaking is required.
	15_SUBJECT_TERMS: Sensemaking, Reverse engineering, Human-computer interaction, verbal protocol studies
	a_REPORT: U
	bABSTRACT: U
	c_THIS_PAGE: U
	17_limitation_of_abstract: UU
	number_of_pages: 266
	19a_NAME_OF_RESPONSIBLE_P: Dr. Robert F. Mills AFIT/ENG
	19b_TELEPHONE_NUMBER_Incl: (937) 255-3636 x4527 robert.mills@afit.edu
	Reset:

